Reference Guide

Axon Framework 1.2
Allard Buijze

Jettro Coenradie

Table of Contents

R 1 11 oo LB (o1 o o PSPPSR 1
1.1. Axon Framework BackgroUndeeeeiiiieiiiiiiieiee ettt e e e e 1
111 A BIEF NISIONY oo 1

O VAV o= o F Ao 1 1SR 2

1.1.3. WHEN 10 USE AXON? ...eeiiiiiiiiiie ettt ettt ettt e e sttt e e e et e e s et e e e s anbee e e e annreeas 2

I = 1o S = (= o [P OPPRSURR 3
2 I B Ta 11 o o= o (o] o PRSP 3

1.2.2. CONFIQUIE IMIBVEN ...ttt e et e e e e e e e s et te e e e e e e e eaennneneeeeeas 4

1.2.3. INfrastruCture reqUITEIMENLESuviieiiieieeeeiieee e et e et e e s e e s e e e s ennne e e e s nneeees 4

1.3. Contributing t0 AXON FrameWOrKcoouiiiiiiiiiie e 5

1.4, LiCeNnSe iNFOIMMELIONveeiiiiiiiie ettt ettt e s e e s et e e e st e e e e e anr e e e e nnneees 5

2. ATCIITECIUIE OVEIVIBIW ...ttt ettt ettt e ettt e e ettt e e e e sttt e e e e nbe e e e s anbae e e e e nnsbeaeesnbeeeeeane 6
G I O] 110> 1o I o =T T S 9
3.1. Creating @ Command HandIEruuuiuiuiiiiiiiiiiiiirrar e ranarannnana 9

3.2. DispatChing COMIMANGScoiiiiiiiieiiiti et e e 11

3.3. Configuring the Command BUSccuuiiiiiiiiiieiieee e 11

3 A Lo o AT Lo 5 P EPTS 12

3.5. Command Handler INtErCEPLOrSoocuviiiiiiee et e e e e e e e e e e ear s 13
3.5.1. Transaction MaNBgEMENTuueiiieieiiiiiiiiiiee e e e e e e et e e e e e s e e saabr e e e e e e e s s eennbbeeeeeeas 13

3.5.2. Structural Validationoooi i 13

TSI I Y o [1] oo SRS SRR 14

4. DOMEIN MOUEIING ittt e ek e e e et e e e ettt e e e st e e e e enbn e e e e annnneeas 15
I Y 0| £ USSP 15
T B o 4 T I V= | PP SUPPRPN 15

4.0.2. APPIICATION EVENLSoveiiiiiie et e e e e et e e e e e e e e e eaneeees 16

G TS (= 0 T Y 1 PR 17

N oo = 0= (PO P PP TPR 17
4.2.1. Basic aggregate implementalionscouiurreeiiiirieeeieeee e e s e s 18

4.2.2. Event SOUrCed agOrEOAESuveieiiueieeeiiiieiee e sttt e e sttt e e e st e e s stbe e e s snbn e e e e snneee e 18

4.2.3. Complex AQQregate SITUCIUIESceeeeeeiieceiieieeeee e e e e ettt e e e e e e e s e ree e e e e e e e e e snnrnaeeeeas 20

5. REPOSITONies and EVENE SLOTESccoiiiiiiiiiiiie ettt e s e e e e e e s e e e e e e e e s s e santbreeeeeaeeeaanns 22
5.1, Standard rePOSITONIEScoevveieiiiieieee e 22

5.2. Event SOUICING rEPOSITOMESccoiurreieiiiiiieeeiiie e sttt e et e e e s e e s e e e s 24

5.3. Event Store implementalionsoooiurieeiiiiii et 25

5.4, SNAPSNOLEING .ottt 29
5.4.1. Creating @ SNAPSNOLccoiiiiiiiiiie e 29

5.4.2. Storing SNapshot EVENESuviiiiiiee e a e e et 31

5.4.3. Initializing an Aggregate based on a Snapshot Eventcccccevieiiiiiiiiiciiccicnnnns 31

5.4.4. Pruning SNaPShot EVENESc.eviiiiiiiiiie e 32

5.5. Advanced conflict detection and reSOIULTIONeeieiiiiiieeiiiiie e 32

Axon Framework 1.2 Reference Guide i

6. EVENE PrOCESSING ...ietiieeiiieie ettt ettt et e e et e e ek e e e e e s e e e e e e e e e e ne e e e e nnnrreeeaa 34

B.1. BEVENE BUS ... 34
6.1.1. SIMPIE EVENE BUSoeiiiiiiiiiie ettt e s 34

6.1.2. ClUSLENING EVENE BUS ...cooeeiiiiieieee ettt st e e e e e e e 34

B.2. EVENE LISIENEIS ...ttt ettt e et e ettt e e e et e e e e nb e e e e e nnraeeeeann 35
6.2.1. BASIC CONFIQUIBLIONuuuueuieieiiiueireeneninenenenenenenenenenenreeneneeerereesrensnenessnsennsnsnsnnnsnnnnnes 35

6.2.2. ASYyNCroNOUS EVENT PrOCESSING ..cuuvvvreeisrreeeeasreeeesssreeesassrseeesasnneessanreeessnnrneeenns 36

6.2.3. Managing transactions in asynchronous event handlingccoccovveeiiieeeiiiieeeene 38

7. Managing complex DUSINESS traNSACHIONSceiiiiiriieiiiieie et e et e e e e e e 41
T.L. SBOA .ttt 41
50 5 O I | = 1Yo = PRSPPI 41

8 N2 V= o - Vo T 42

7.1.3. Keeping track of DEaAIINESeiiiiieiiiiiiiiee e 44

7.1.4. INJECHING RESDUICESeveieeiiieete ettt e e e e e e e e et eeeean 45

7.2, SA08 INFFASIIUCIUIEoiiiiiiie ettt ettt e e s e e e s e e e e nnnneeeean 46
T.2.1. SA0AMANAGES ...coiie e ————— 46

7.2.2. SA0AREPOSITOIYuviieieiiie e e i ittt e e e e s e e e e e e e e e e s e e e e e e e s s e b e e e e e aeeeeeasnrrrreeaeas 48

. T 1= 11 o 49
8.1. Command COMPONENE TESHING .-..vvveeeeeeeeeiiiiiiieiee e e e et ee e e e e e e s st ee e e e e e e e s e senreeeeeeeaaeeaans 49

8.2. TeStiNg ANNOLALEA SBOBSvveeeiiuiiieeeiiti ettt e e e e et e e e e e e e anr e e e e enees 53

S U 1o S o1 o PSP PRSP PP PUPPP 55
9.1. Adding support for the Java Platform Common AnNotationscceeeevviiciiveereeeeescecnenne, 55

9.2. Using the AX0on NameSPace SNOMCULcceeiiiiiiiiiiiieee e e s e e e e s e e e e e e e earanneee s 55

9.3. Wiring event and command handlersc.eeeeiieiiiiiiiice e 56
0.3.1. Event NaNAIENSeeeiiiiiee e 56

9.3.2. CommaNd NANAIENSooeiiiiiie e 57

9.3.3. Annotation support using the axon NAMESPAECEeveeerriireeriiiree e e 58

9.4. WiriNg the @VENT DUScoiiiiiiie et 58

9.5. Wiring the command DUSouiiiiiiiie e e e e 59

9.6. WiriNg the REPOSITOIYuvviiiiiei ittt e et e e e e e et e e e e e e e s st e e e e e e e e e s seaarrraeeeaaens 60

O.7. WiriNg the EVENE SLOMEuuuviueiiiiiiiiirirueieueneierenrrerenerenenrnerrrrrrnernrr————. 60

9.8. Configuring SNAPSNOLEINGoeiiiiiiieiii e 61

9.9. CONFIQUITNG SAOASveeeeiiuiiiieeiiieie ettt e st e et e et e e e s bt e e s e e e e snbe e e e e anneneeean 62

10. PerfOrmManCe TUNINGuveeiiiiieiee ettt e e e st e e e e s st b e e e s sabbe e e e e anbne e e e anneeeeennnes 64
10.1. DAADASE INAEXESevveeeeiiiiiie ettt sb e e et e e et e e e s sttt e e e s nnna e e e e enaees 64
L0 2 O o o1 o SRR 64
10.3. SNAPSNOLLING ..o —————— 65
10.4. AQQregate PETOIMEINCEcccuuiiieiiiiiee et e et e et e st e s s e e e s e e e e e s anrneeenns 65
10.5. Event SerialiZer TUNINGoveiiiiiiie et e e et e e e e e e enens 66
10.6. Custom 1dentifier GENEIaLiONeiiiiieiei e 66

Axon Framework 1.2 Reference Guide i

1. Introduction

Axon is a lightweight framework that helps developers build scalable and extensible applications by
addressing these concerns directly in the architecture. This reference guide explains what Axon is, how it
can help you and how you can use it.

If you want to know more about Axon and its background, continue reading in Section 1.1, “Axon
Framework Background”. If you're eager to get started building your own application using Axon, go
quickly to Section 1.2, “Getting started”. If you're interested in helping out building the Axon Framework,
Section 1.3, “Contributing to Axon Framework” will contain the information you require. All help is
welcome. Finally, this chapter covers some legal concernsin Section 1.4, “License information”.

1.1. Axon Framework Background

1.1.1. A brief history

The demands on software projects increase rapidly as time progresses. Companies no longer accept a
brochure-like homepage to promote their business; they want their (web)applications to evolve together
with their business. That means that not only projects and code bases become more comple, it also means
that functionality is constantly added, changed and (unfortunately not enough) removed. It can befrustrating
to find out that a seemingly easy-to-implement feature can require development teams to take apart an
entire application. Furthermore, today's webapplications target an audience of potentially billions of people,
making scalability an indisputable requirement.

Although there are many applications and frameworks around that deal with scalability issues, such as
GigaSpaces and Terracotta, they share one fundamental flaw. These stackstry to solve the scalability issues
while letting devel opers devel op applications using the layered architecture they are used to. In some cases,
they even prevent or severely limit the use of areal domain model, forcing all domain logic into services.
Although that is faster to start building an application, eventually this approach will cause complexity to
increase and devel opment to slow down.

Greg Young, initiator of the Command Query Responsiblity Segregation (CQRS) pattern addressed these
issues by drastically changing the way applications are architected. I nstead of separating logic into separate
layers, logic is separated based on whether it is changing an application's state or querying it. That means
that executing commands (actions that potentially change an application's state) are executed by different
components than those that query for the application's state. The most important reason for this separationis
the fact that there are different technical and non-technical requirementsfor each of them. When commands
are executed, the query components are (a)synchronously updated using events. This mechanism of updates
through events, is what makes this architecture is extensible, scalable and ultimately more maintainable.

Axon Framework 1.2 Reference Guide 1

ey

Note

Ipte |

A full explanation of CQRS is not within the scope of this document. If you would like
to have more background information about CQRS, visit the Axon Framework website:
www.axonframework.org [http://www.axonframework.org/]. It contains links to background
information.

Since CQRS is so fundamentally different than the layered-architecture which dominates the software
landscape nowadays, it is quite hard to grasp. It is not uncommon for developers to walk into afew traps
whiletrying to find their way around this architecture. That'swhy Axon Framework was conceived: to help
developers implement CQRS applications while focussing on the businesslogic.

1.1.2. What is Axon?

Axon Framework helps build scalable, extensible and maintainable applications by supporting devel opers
apply the Command Query Responsibility Segregation (CQRS) architectural pattern. It doesso by providing
implementations of the most important building blocks, such as aggregates, repositories and event buses
(the dispatching mechanism for events). Furthermore, Axon provides annotation support, which allowsyou
to build aggregates and event listeners withouth tying your code to Axon specific logic. This alows you
to focus on your business logic, instead of the plumbing, and helps you to make your code easier to test
in isolation.

Axon does not, in any way, try to hide the CQRS architecture or any of its components from devel opers.
Therefore, depending on team size, it is till advisable to have one or more developers with a thorough
understanding of CQRS on each team. However, Axon does help when it comes to guaranteeing delivering
events to the right event listeners and processing them concurrently and in the correct order. These multi-
threading concerns are typically hard to deal with, leading to hard-to-trace bugs and sometimes complete
application failure. When you have a tight deadline, you probably don't even want to care about these
concerns. Axon's code is thoroughly tested to prevent these types of bugs.

Most of the concerns Axon addresses are located within a single VM. However, for an application to
be scalable, asingle VM is not enough. Therefore, Axon provides the axon- i nt r egr at i on module,
which allows eventsto be sent to a Spring Integration channel. From there, you can use Spring Integration
to dispatch events to application components on different machines. In the near future, Axon will provide
more ways to dispatch commands and events between JVM's and physical machines.

1.1.3. When to use Axon?

Will each application benefit from Axon? Unfortunately not. Simple CRUD (Create, Read, Update, Delete)
applications which are not expected to scale will probably not benefit from CQRS or Axon. Fortunately,
thereis awide variety of applications that does benefit from Axon.

Applications that will most likely benefit from CQRS and Axon are those that show one or more of the
following characteristics:

Axon Framework 1.2 Reference Guide 2

http://www.axonframework.org/
http://www.axonframework.org/

» Theapplicationislikely to be extended with new functionality during along period of time. For example,
an online store might start off with a system that tracks progress of Orders. At alater stage, this could be
extended with Inventory information, to make sure stocks are updated when items are sold. Even later,
accounting can require financial statistics of salesto be recorded, etc. Although it is hard to predict how
software projects will evolve in the future, the majority of this type of application is clearly presented
as such.

» Theapplication has ahigh read-to-writeratio. That means dataisonly written afew times, and read many
times more. Since data sources for queries are different to those that are used for command validation,
it is possible to optimize these data sources for fast querying. Duplicate datais no longer an issue, since
events are published when data changes.

» The application presents data in many different formats. Many applications nowadays don't stop when
showing information on aweb page. Some applications, for example, send monthly emailsto notify users
of changes that occured that might be relevant to them. Search engines are another example. They use
the same data your application does, but in away that is optimized for quick searching. Reporting tools
aggregate information into reports that show data evolution over time. This, again, is a different format
of the same data. Using Axon, each data source can be updated independently of each other on areal-
time or scheduled basis.

» When an application hasclearly separated componentswith different audiences, it can benefit from Axon,
too. An example of such application is the online store. Employees will update product information and
availability on the website, while customers place orders and query for their order status. With Axon,
these components can be deployed on separate machines and scaled using different policies. They are
kept up-to-date using the events, which Axon will dispatch to all subscribed components, regardles of
the machine they are deployed on.

* Integration with other applications can be cumbersomework. The strict definition of an application's AP
using commands and events makes it easier to integrate with external applications. Any application can
send commands or listen to events generated by the application.

1.2. Getting started

This section will explain how you can obtain the binaries for Axon to get started. There are currently two
ways: either download the binariesfrom our website or configure arepaository for your build system (Maven,
Gradle, etc).

1.2.1. Download Axon

Y ou can download the Axon Framework from our downloads page: axonframework.org/download [http://
www.axonframework.org/download].

Thispage offersanumber of downloads. Typically, youwould want to usethelatest stablerelease. However,
if you're eager to get started using the latest and greatest features, you could consider using the snapshot

Axon Framework 1.2 Reference Guide 3

http://www.axonframework.org/download
http://www.axonframework.org/download
http://www.axonframework.org/download

releasesinstead. The downloads page contains a number of assemblies for you to download. Some of them
only provide the Axon library itself, while others also provide the libraries that Axon depends on. There
isaso a"full" zip file, which contains Axon, its dependencies, the sources and the documentation, al in
asingle download.

If you really want to stay on the bleeding edge of development, you can also checkout the sources from the
subversion repository: ht t p: / / axonf r amewor k. googl ecode. com svn/trunk/ .

1.2.2. Configure Maven

If you use maven as your build tool, you need to configure the correct dependencies for your project. Add
the following code in your dependencies section:

<dependency>
<gr oupl d>or g. axonf r amewor k</ gr oupl d>
<artifactld>axon-core</artifactld>
<versi on>1. 2</ ver si on>

</ dependency>

Most of the features provided by the Axon Framework are optional and require additional dependencies.
We have chosen not to add these dependencies by default, as they would potentially clutter your project
with artifacts you don't need. This section discusses these dependencies and describes in what scenarios
you need them.

Spring Integration

The Axon Framework provides connectorsthat allow you to publish events on a Spring I ntegration channel.
These connectors require Spring | ntegration on the classpath. Y ou need the following maven dependencies
to use these connectors. Axon was compiled against Spring Integration 2.

<dependency>
<gr oupl d>or g. axonf r amewor k</ gr oupl d>
<artifactld>axon-integration</artifactld>
<versi on>1. 2</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k. i nt egr ati on</ gr oupl d>
<artifactld>spring-integration-core</artifactld>
<version><!-- Add version here --></version>

</ dependency>

1.2.3. Infrastructure requirements

Axon Framework doesn't impose many requirements on the infrastructure. It has been built and tested
against Java 6, making that more or less the only requirement.

Since Axon doesn't create any connections or threads by itself, it is safe to run on an Application Server.
Axon abstracts all asynchronous behavior by using Execut or s, meaning that you can easily pass a

Axon Framework 1.2 Reference Guide 4

container managed Thread Pool, for example. If you don't use an Application Server (e.g. Tomcat, Jetty or
a stand-alone app), you can use the Execut or s class or the Spring Framework to create and configure
Thread Pools.

1.3. Contributing to Axon Framework

Development on the Axon Framework is never finished. There will always be more features that we like to
include in our framework to continue making development of scalabale and extensible application easier.
This means we are constantly looking for help in developing our framework.

There are anumber of ways in which you can contribute to the Axon Framework:

* You can report any bugs, feature requests or ideas about improvemens on our issue page:
axonframework.org/issues [http://www.axonframework.org/issues]. All ideas are welcome. Please be as
exact as possible when reporting bugs. Thiswill help us reproduce and thus solve the problem faster.

« If you have created acomponent for your own application that you think might be useful to includein the
framework, send us apatch or a zip containing the source code. We will evaluate it and try to fit it in the
framework. Please make sure code is properly documented using javadoc. This helps us to understand
what is going on.

« If you know of any other way you think you can help us, do not hesitate to send a message to the Axon
Framework mailinglist [mailto:axonframework@googlegroups.com].

1.4. License information

The Axon Framework and its documentation are licensed under the Apache License, Version 2.0. Y ou may
obtain a copy of the License at http://www.apache.org/licenses/LI CENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License [http://www.apache.org/licenses/LICENSE-2.0] for the specific
language governing permissions and limitations under the License.

Axon Framework 1.2 Reference Guide 5

http://www.axonframework.org/issues
http://www.axonframework.org/issues
mailto:axonframework@googlegroups.com
mailto:axonframework@googlegroups.com
mailto:axonframework@googlegroups.com
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

2. Architecture Overview

CORSonitself isavery simple pattern. It only describesthat the component of an application that processes
commands should be separated from the component that processes queries. Although this separation is
very simple on itself, it provides a number of very powerful features when combined with other patterns.
Axon provides the building block that make it easier to implement the different patterns that can be used
in combination with CQRS.

The diagram below shows an example of an extended layout of a CQRS-based event driven architecture.
The Ul component, displayed on the left, interacts with the rest of the application in two ways: it sends
commandsto the application (shown in thetop section), and it queriesthe application for information (shown
in the bottom section).

Domain
rep|y —

@— events ‘>|j

Event Store

Aonusoday

command ==

J9|pUBH pueWWoD

B

events

Event Handler 3 EICAS

i events

4 Analysis
} = Database m
DTO’s 5 é
o =
5 &
QD
b _ 2
query - S Database email)

Messaging

Figure 2.1. Architecture overview of a CQRS application
Command Handling

Commands are represented by simple and straightforward objects that contain al data necessary for a
command handler to executeit. Typically, acommand expresses someintent by itsname. In Javaterms, that
means the class hame is used to figure out what needs to be done, and the fields of the command provide
the information required to do it.

Axon Framework 1.2 Reference Guide 6

The Command Bus receives commands and routes them to the Command Handlers. Each command handler
responds to a specific type of command and executes |ogic based on the contents of the command. In some
cases, however, you would also want to execute logic regardless of the actual type of command, such as
validation, logging or authorization.

Axon provides building blocks to help you implement a command handling infrastructure with these
features. These building blocks are thoroughly described inChapter 3, Command Handling.

Domain Modeling

The command handler retrieves domain objects (Aggregates) from arepository and executes methods on
them to change their state. These aggregates typically contain the actual business logic and are therefore
responsible for guarding their own invariants. The state changes of aggregates result in the generation
of Domain Events. Both the Domain Events and the Aggregates form the domain model. Axon provides
supporting classesto help you build a domain model. They are described inChapter 4, Domain Modeling.

Repositories and Event Stores

Repositories are responsible for providing access to aggregates. Typically, these repositories are optimized
for lookup of an aggregate by itsuniqueidentifier only. Somerepositorieswill storethe state of the aggregate
itself (using Object Relational Mapping, for example), while other store the state changes that the aggregate
has gone through in an Event Store. The repository is also responsible for persisting the changes made to
aggregates in its backing storage.

Axon provides support for both the direct way of persisting aggregates (using object-relational -mapping,
for example) and for event sourcing. More about repositories and event stores can be found inChapter 5,
Repositories and Event Sores.

Event Processing

The event bus dispatches events to all interested event listeners. This can either be done synchronously or
asynchronously. Asynchronous event dispatching allows the command execution to return and hand over
control to the user, while the events are being dispatched and processed in the background. Not having to
wait for event processing to compl ete makes an application more responsive. Synchronous event processing,
on the other hand, is simpler and is a sensible default. Synchronous processing also allows severa event
listeners to process events within the same transaction.

Event listeners receive events and handle them. Some handlers will update data sources used for querying
while others send messagesto external systems. Asyou might notice, the command handlers are compl etely
unaware of the components that are interested in the changes they make. This means that it is very non-
intrusive to extend the application with new functionality. All you need to do is add another event listener.
The events loosely couple all componentsin your application together.

In some cases, event processing requires new commands to be sent to the application. An example of thisis
when an order isreceived. This could mean the customer's account should be debited with the amount of the

Axon Framework 1.2 Reference Guide 7

purchase, and shipping must be told to prepare a shipment of the purchased goods. In many applications,
logic will become more complicated than this: what if the customer didn't pay in time? Will you send the
shipment right away, or await payment first? The sagais the CQRS concept responsible for managing these
complex business transactions.

The building blocks related to event handling and dispatching are explained inChapter 6, Event Processing.

Querying for data

Thethin data layer in between the user interface and the data sources provides aclearly defined interface to
the actual query implementation used. This data layer typicaly returns read-only DTO objects containing
query results. The contents of these DTO's are typically driven by the needs of the User Interface. In most
cases, they map directly to a specific view in the Ul (also referred to as table-per-view).

Axon does not provide any building blocks for this part of the application. The main reason is that thisis
very straightforward and doesn't differ from the layered architecture.

Axon Framework 1.2 Reference Guide 8

3. Command Handling

A state change within an application starts with a Command. A Command is a combination of expressed
intent (which describes what you want done) as well as the information required to undertake action based
on that intent. A Command Handler is responsible for handling commands of a certain type and taking
action based on the information contained inside it.

The use of an explicit command dispatching mechanism has a number of advantages. First of al, thereis
asingle object that clearly describes the intent of the client. By logging the command, you store both the
intent and rel ated datafor future reference. Command handling also makesit easy to expose your command
processing components to remote clients, viaweb services for example. Testing also becomes alot easier,
you could define test scripts by just defining the starting situation (given), command to execute (when) and
expected results (then) by listing a number of events and commands (see Chapter 8, Testing). Thelast major
advantageisthat it is very easy to switch between synchronous and asynchronous command processing.

The next sections provide an overview of the tasks related to creating a Command Handling infrastructure
with the Axon Framework.

3.1. Creating a Command Handler

The Command Handler is the object that receives a Command of a pre-defined type and takes action based
on its contents. In Axon, a Command may be any object. There is no predefined type that needs to be
implemented. The Command Handler, however, must implement the CormandHand| er interface. This
interface declares only a single method: Qbj ect handl e(T conmand, Unit OfWrk uow),
where T is the type of Command this Handler can process. The concept of the UnitOfWork is explained
in Section 3.4, “Unit of Work”. It is not recommended to use return values, but they are allowed. Always
consider using a "fire and forget" style of command handlers, where a client does not have to wait
for a response. As return value in such a case, you are recommended to use Voi d. TYPE, the officia
representation of thevoi d keyword.

@ Note

Note that Command Handlers need to be explicitly subscribed to the Command Bus for the
specific types of Command they can handle. See Section 3.3, “ Configuring the Command Bus’.

Annotation support

More often than not, a command handler will need to process severa types of closely related
commands. With Axon's annotation support you can use any POJO as command handler. Just add the
@ommandHandl| er annotation to your methods to turn them into a command handler. These methods
should declare the command to process asthefirst parameter. They may take an optional second parameter,
which is the Uni t OF Wor k for that command (see Section 3.4, “Unit of Work”). Note that for each

Axon Framework 1.2 Reference Guide 9

command type, there may only be one handler! This restriction counts for al handlers registered to the
same command bus.

You can use the Annot at i onCommandHandl er Adapt er to turn your annotated class into a
CommandHandl| er . The adapter also takes a CommandBus instance. Use the subscri be() method
on the adapter to subscribe all the annotated handlers to the command bus using the correct command type.

@ Note

If you use Spring, you can add the <axon: annot ati on-confi g/ > element to your
application context. It will turn any bean with @omrandHandl er annotated methods into
a command handler. They will also be automatically subscribed to the ConmmandBus. In
combination with Spring's classpath scanning, this will automatically subscribe any command
handler in your application.

Note that you need to be careful when mixing manual wrapping and the use of annotation-
config element. This might result in command handler being subscribed twice.

Aggr egat eAnnot at i onConmandHandl er

It is not unlikely that most command handler operations have an identical structure: they load an
Aggregate from a repository and call a method on the returned aggregate using values from the
command as parameter. If that is the case, you might benefit from a generic command handler:
the Aggr egat eAnnot at i onConmrandHandl er . This command handler uses @omrandHandl| er
annotations on the aggregate's methods to identify which methods need to be invoked for an incoming
command. If the @ConmmandHandl er annotation is placed on a constructor, that command will cause a
new Aggregate instance to be created.

The Aggr egat eAnnot at i onCommandHandl er dtill needs to know which aggregate instance
(identified by it's unique Aggregate Identifier) to load and which version to expect. By default,
the Aggr egat eAnnot at i onConmandHandl er uses annotations on the command object to find
this information. The @ar get Aggr egat el denti fi er annotation must be put on a field or
getter method to indicate where the identifier of the target Aggregate can be found. Similarly, the
@rar get Aggr egat eVer si on may used to indicate the expected version.

The @ar get Aggr egat el dent i fi er annotation can be placed on afield or amethod. The latter case
will use the return value of a method invocation (without parameters) as the value to use. If thisvalueis
an instance of Aggr egat el dentii fi er, it will be directly used. If itisaj ava. util . UUl D, it will
be wrapped in a UUlI DAggr egat el denti fi er. Any other object will have itst oSt ri ng() vaue
wrappedinaSt ri ngAggr egat el denti fier.

If you prefer not to use annotations, the behavior can be overridden by supplying a custom
CommandTar get Resol ver . This class should return the Aggr egat el denti fi er and expected
version (if any) based on a given command.

Axon Framework 1.2 Reference Guide 10

ey

Ipte |

Creating new Aggregate I nstances

When the @ommandHandl er annotation is placed on an Aggregate's constructor, the
respective command will create a new instance of that aggregte and add it to the repository.
Those commands do not require to target a specific aggregate instance. That wouldn't make
sense, since the instance is yet to be created. Therefore, those commands do not require any
@rar get Aggregat el denti fi er or @ar get Aggr egat eVer si on annotations, nor
will acustom CormandTar get Resol ver beinvoked for these commands.

3.2. Dispatching commands

The CommandBus provides two methods to dispatch commands to their respective handler:
di spat ch(comuand, call back) and di spat ch(comrand) . The first parameter is the actual
command to dispatch. The optional second parameter takesacallback that allowsthe dispatching component
to be notified when command handling is completed. This callback has two methods: onSuccess()
and onFai | ure(), which are called when command handling returned normally, or when it threw an
exception, respectively.

The calling component may not assume that the callback is invoked in the same thread that dispatched
the command. If the calling thread depends on the result before continuing (which is a highly discouraged
approach), you can use the Fut ur eCal | back. It is a combination of a Fut ur e (as defined in the
java.concurrent package) and Axon's CommandCal | back.

Best scalability is achieved when your application is not interested in the result of a dispatched command
a al. In that case, you should use the single-parameter version of the di spat ch method. If the
CommandBus is fully asynchronous, it will return immediately after the command has been successfully
received. Your application will just have to guarantee that the command is processed and with "positive
outcome”, sooner or later...

3.3. Configuring the Command Bus

The Command Bus is the mechanism that dispatches commands to their respective Command Handler.
Commands are always sent to only one (and exactly one) command handler. If no command handler is
available for a dispatched command, an exception (NoHandl er For ConmrandExcept i on) is thrown.
Subscribing multiple command handlers to the same command type will result in subscriptions replacing
each other. In that case, the last subscription wins.

Axon provides a single implementation of the Command Bus: Si npl eConmandBus. The
Si mpl eCommandBus dispatches and commands and executes the handler in the calling thread. You
can subscribe and unsubscribe command handlers using the subscri be and unsubscri be methods,
respectively. They both take two parameters: the type of command to (un)subscribe the handler to, and the
handler to (un)subscribe. An unsubscription will only be doneif the handler passed as the second parameter

Axon Framework 1.2 Reference Guide 11

was currently assigned to handle that type of command. If another command was subscribed to that type
of command, nothing happens.

3.4. Unit of Work

The Unit of Work is an important concept in the Axon Framework. The processing of a command can be
seen as a single unit. Each time a command handler performs an action, it is tracked in the current Unit of
Work. When command handling is finished, the Unit of Work is committed and all actions are finalized.
This means that any repositores are notified of state changes in their aggregates and events scheduled for
publication are send to the Event Bus.

The Unit of Work serves two purposes. First, it makes the interface towards repositories alot easier, since
you do not have to explicitly save your changes. Secondly, it is an important hook-point for interceptors to
find out what a command handler has done.

In most cases, you are unlikely to need access to the Unit of Work. It ismainly used by the building blocks
that Axon provides. If you do need access to it, for whatever reason, there are a few ways to obtain it.
The Command Handler receives the Unit Of Work through a parameter in the handle method. If you use
annotation support, you may add the optional second parameter of type Uni t OF Wor k to your annotated
method. In other locations, you can retrieve the Unit of Work bound to the current thread by calling
Current Uni t OF Wor k. get () . Notethat thismethod will throw an exception if thereisno Unit of Work
bound to the current thread. Use Cur r ent Uni t OF Wor k. i sSt art ed() tofind out if oneisavailable.

@ Note

Note that the Unit of Work is merely a buffer of changes, not a replacement for Transactions.
Although all staged changes are only committed when the Unit of Work is committed, its
commit is not atomic. That means that when a commit fails, some changes might have been
persisted, while other are not. Best practices dictate that a Command should never contain
more than one action. If you stick to that practice, a Unit of Work will contain asingle action,
making it safe to use as-is. If you have more actions in your Unit of Work, then you could
consider attaching atransaction to the Unit of Work's commit. See Section 3.5.1, “Transaction
management”.

UnitOfWork and Exceptions

Your command handlers may throw an Exception as a result of command processing. By default, these
exceptions will cause the UnifOfWork to roll back all changes. As a result, no Events are stored or
published. In some cases, however, you might want to commit the Unif of Work and still notify the
dispatcher of the command of an exception through the callback. The Si npl eCommandBus alows
you to provide a Rol | backConfi gurati on. The Rol | backConfi gur at i on instance indicates
whether an exception should perform a rollback on the Unit of Work, or a commit. Axon provides two
implementation, which should cover most of the cases.

Axon Framework 1.2 Reference Guide 12

TheRol | backOnAl | Excepti onsConf i gur at i on,whichisthedefault, will causearollback onany
exception (or error). The other isthe Rol | backOnUncheckedExcept i onConfi gur ati on, which
will commit the Unit of Work on unchecked exceptions (those not extending Runt i meExcept i on) while
till performing arollback on Errors and Runtime Exceptions.

3.5. Command Handler Interceptors

One of the advantages of using a command bus is the ability to undertake action based on all incoming
commands. Examples are logging or authentication, which you might want to do regardiess of the type
of command. This is done using Command Handler Interceptors. These interceptors can take action both
before and after command processing. Interceptors can even block command processing altogether, for
example for security reasons.

Interceptors must implement the CommandHand| er | nt er cept or interface. This interface declares
one method, handl e, that takes three parameters. the command, the current Uni t OF Wor k and an
I nt er cept or Chai n. Thel nt er cept or Chai n isused to continue the dispatching process.

3.5.1. Transaction management

The command handling process can be considered an atomic procedure; it should either be processed
entirely, or not at al. Axon Framework uses the Unit Of Work to track actions performed by the command
handlers. After the command handler completed, Axonwill try to commit the actionsregistered with the Unit
Of Work. Thisinvolves storing modified aggregates (see Chapter 4, Domain Modeling) in their respective
repository (see Chapter 5, Repositories and Event Sores) and publishing events on the Event Bus (see
Chapter 6, Event Processing).

The Unit Of Work, however, it is not a replacement for a transaction. The Unit Of Work only ensures that
changes made to aggregates are stored upon successful execution of acommand handler. If an error occurs
while storing an aggregate, any aggregates aready stored are not rolled back. If this is important to your
application (although it should be avoided as much as possible), consider using a Transaction Interceptor
on the command bus that attaches a transaction to the Unit of Work.

Axon provides the SpringTransactionallnterceptor, which uses Spring's
Pl at f or nilr ansact i onManager to manage the actual transactions. A transaction is committed after
a successful commit of the Unit of Work, or rolled back as the Unit of Work is rolled back.

3.5.2. Structural validation

There is no point in processing a command if it does not contain al required information in the correct
format. In fact, a command that lacks information should be blocked as early as possible, preferably even
before any transaction is started. Therefore, an interceptor should check all incoming commands for the
availability of such information. Thisis called structural validation.

Axon Framework has support for JSR 303 Bean Validation based validation. This allows you to
annotate the fields on commands with annotations like @Not Enpty and @Patt ern. You need to

Axon Framework 1.2 Reference Guide 13

include a JSR 303 implementation (such as Hibernate-Validator) on your classpath. Then, configure a
BeanVal i dati onl nt er cept or onyour Command Bus, and it will automatically find and configure
your validator implementation. While it uses sensible defaults, you can fine-tune it to your specific needs.

Q) Tip

L

You want to spend as less resources on an invalid command as possible. Therefore, this
interceptor is generally placed in the very front of the interceptor chain. In some cases, a
Logging or Auditing interceptor might need to be placed in front, with the validating interceptor
immediately following it. Transaction Management is better done after structural validation, as
it often requires remote resources.

3.5.3. Auditing

Well designed events will give clear insight in what has happened, when and why. To use the event store
as an Audit Trail, which provides insight in the exact history of changes in the system, this information
might not be enough. In some cases, you might want to know which user caused the change, using what
command, from which machine, etc.

The Audi tingl nterceptor is an interceptor that allows you to attach arbitray information
to events just before they are stored or published. The Auditinglnterceptor uses an
Audi t i ngDat aPr ovi der to retrieve the information to attach to these events. Y ou need to provide the
implementation of the Audi t i ngDat aPr ovi der yourself.

An Audit Logger may be configured to write to an audit log. To do so, you can implement the
Audi t Logger interface and configureit inthe Audi t i ngl nt er cept or . The audit logger is notified
both on succesful execution of the command, as well as when execution fails. If you use event sourcing,
you should be aware that the event log already contains the exact details of each event. In that case, it could
suffice to just log the event identifier or aggregate identifier and sequence number combination.

@ Note

Note that the log method is called in the same thread as the command processing. This means
that logging to slow sources may result in higher response timesfor the client. When important,
make sure logging is done asynchronously from the command handling thread.

Axon Framework 1.2 Reference Guide 14

4. Domain Modeling

In a CQRS-based application, aDomain Model (as defined by Eric Evans and Martin Fowler) can be avery
powerful mechanism to harness the complexity involved in the validation and execution of state changes.
Although atypical Domain Model has a great number of building blocks, two of them play a major role
when applied to CQRS: the Event and the Aggregate.

The following sections will explain the role of these building blocks and how to implement them using the
Axon Framework.

4.1. Events

The Axon Framework makes a distinction between three types of events, each with a clear use and type of
origin. Regardless of their type, al events must implement the Event interface or one of the more specific
sub-types, Domain Events, Application Events and System Events, each described in the sections below.

All events may carry data and meta-data. Typically, the data is added to each event as fields in the event
implementation. Meta-data, on the other hand is stored separately. The Auditing interceptor uses this
mechani sm to attach meta-datato eventsfor auditing purposes. All Axon'simplementations of Eventsallow
the subclasses to attach arbitrary information as meta-data.

@ Note
In general, you should not base business decisions on information in the meta-data of events.
If that isthe case, you might have information attached that should really be part of the event's
regular data instead. Meta-datais typically used for auditing and tracing.

4.1.1. Domain Events

The most important type of event in any CQRS application is the domain event. It represents an event that
occurs inside your domain logic, such as a state change or special notification of a certain state. The latter
not being per definition a state change.

In the Axon Framework, all domain events should extend the abstract Donai nEvent class. This abstract
class keeps track of the aggregate they are generated by, and the sequence number of the event inside the
aggregate. This information is important for the Event Sourcing mechanism, as well as for event handlers
(see Section 6.2, “Event Listeners’) that need to know the origin of an event.

Although not enforced, it isgood practiceto make domain eventsimmutable, preferably by making all fields
final and by initializing the event within the constructor.

@ Note

Although Domain Events technically indicate a state change, you should try to capture the
intention of the state in the event, too. A good practice is to use an abstract implementation

Axon Framework 1.2 Reference Guide 15

of a domain event to capture the fact that certain state has changed, and use a concrete
sub-implementation of that abstract class that indicates the intention of the change. For
example, you could have an abstract Addr essChangedEvent , and two implementations
Cont act MovedEvent and Addr essCor r ect edEvent that capturetheintent of the state
change. Somelistenersdon't care about theintent (e.g. database updating event listeners). These
will listen to the abstract type. Other listeners do care about the intent and these will listen to
the concrete subtypes (e.g. to send an address change confirmation email to the customer).

<<abstract>>
AddressChangedEvent

State change

(ContactMovedEvent J [AddressCorrectedEvent j

Figure 4.1. Adding intent to events

There is a specia type of Event , which has a special meaning: the Aggr egat eDel et edEvent . This
is a marker interface that indicates a migration to a "deleted" state of the aggregate. Repositories must
treat aggregates that have applied such an event as deleted. Hence, loading an aggregate that has an
Aggr egat eDel et edEvent resultsin an exception.

Snapshot events are instances of Donai nEvent with a special intent. They are typically not dispatched
viathe event bus, but are used to summarize an arbitrary number of events from the past into asingle entry.
This can drastically improve performance when initializing an aggregate's state from a series of events. See
Section 5.4, “ Snapshotting” for more information about snapshot events and their use.

4.1.2. Application Events

Application events are events that cannot be categorized as domain events, but do have a significant
importance for the application. When using application events, check if the event is actually adomain event
that you overlooked. Examples of application events are the expiry of a user session, or the notification
of an email being successfully sent. The usefulness of these events depend on the type of application you
are creating.

In the Axon Framework, you can extend the abstract Appl i cat i onEvent class for application events.
This class will generate a unique identifier and a time stamp for the current event. Optionally, you can
attach an aobject that acts as the source of the event. This source is loosely referenced, which means that
if the garbage collector cleans up the source, or when the event is serialized and de-serialized, the original
source class is not available anymore. Instead, you will have access to the type of source and the value of
itst oStri ng() method.

Axon Framework 1.2 Reference Guide 16

4.1.3. System Events

Thethird type of event identified by Axon Framework is the System Event. These events typically provide
notifications of the status of the system. These events could, for example, indicate that a subsystem is non-
responsive or has raised an exception.

All system events extend the abstract Sy st emEvent class. Upon construction of this event, you may pass
an exception, defining the cause of the event, and a source object which is considered the source of the
event. Aswith application events, the source is loosely referenced from the event.

4.2. Aggregate

An Aggregateis an entity or group of entitiesthat is always kept in a consistent state. The aggregate root is
the object on top of the aggregate tree that is responsible for maintaining this consistent state.

@ Note
The term "Aggregate” refers to the aggregate as defined by Evansin Domain Driven Design:

“A cluster of associated objects that are treated as a unit for the purpose of data changes.
External references are restricted to one member of the Aggregate, designated astheroot. A set
of consistency rules applies within the Aggregate's boundaries. ”

A more extensive definition can be found on: http://domaindrivendesign.org/freelinking/
Aggregate.

For example, a "Contact" aggregate will contain two entities: contact and address. To keep the entire
aggregate in a consistent state, adding an address to a contact should be done via the contact entity. In this
case, the Contact entity is the appointed aggregate root.

In Axon, aggregates areidentified by an Aggr egat el dent i f i er . There aretwo basic implementations
of these identifiers: UUI DAggr egat el denti fi er, which used Java's UUI D to generate random
identifiers, and the St ri ngAggr egat el denti fi er, which allows you to choose a St ri ng which
should be used asidentifier. Y ou can choose any identifier type you like, and even create your own, aslong
asthey have avalid String representation.

@ Note
Itis considered agood practice to use randomly generated identifiers, as opposed to sequenced
ones. Using a sequence drastically reduces scalability of your application, since machines need
to keep each other up-to-date of the last used sequence numbers. The chance of collisions with
aUUID isvery slim (achance of 10", if you generate 8.2 x 10! UUIDs).

Furthermore, be careful when using functional identifiersfor aggregates. They have atendency
to change, making it very hard to adapt your application accordingly.

Axon Framework 1.2 Reference Guide 17

http://domaindrivendesign.org/freelinking/Aggregate
http://domaindrivendesign.org/freelinking/Aggregate

4.2.1. Basic aggregate implementations

Aggr egat eRoot

In Axon, al aggregate roots must implement the Aggr egat eRoot interface. Thisinterface describes the
basi c operations needed by the Repository to store and publish the generated domain events. However, Axon
Framework provides a number of abstract implementations that help you writing your own aggregates.

@ Note
Note that only the aggregate root needs to implement the Aggr egat eRoot interface or
implement one of the abstract classes mentioned below. The other entities that are part of the
aggregate do not have to implement any interfaces.

Abst r act Aggr egat eRoot

The Abstract Aggr egat eRoot is a basic implementation that provides a
regi st er Event (Domai nEvent) method that you can call in your business logic method to have an
event added to the list of uncommitted events. The Abst r act Aggr egat eRoot will keep track of all
uncommitted registered events and make sure they are forwarded to the event bus when the aggregate is
saved to arepository.

Abst ract JpaAggr egat eRoot

The Abst r act JpaAggr egat eRoot is a JPA-compatible implementation of the Aggr egat eRoot
interface. It has the annotation necessary to persist the aggregate's state and reconstruct it from database
tables. It usesthe @/er si on annotation on one of it's field to perform optimistic locking on the database
level. Similar tothe Abst r act Aggr egat eRoot ,theAbst r act JpaAggr egat eRoot keepstrack of
uncommitted events, which have been registered using r egi st er Event (Domai nEvent) .

4.2.2. Event sourced aggregates

Axon framework provides a few repository implementations that can use event sourcing
as storage method for aggregates. These repositories require that aggregates implement the
Event Sour cedAggr egat eRoot interface. As with most interfaces in Axon, we aso provide one or
more abstract implementations to help you on your way.

Event Sour cedAggr egat eRoot

Theinterface Event Sour cedAggr egat eRoot definesan extramethod, i niti alizeState(),on
top of the Aggr egat eRoot interface. This method initializes an aggregate's state based on an event
stream.

Abst ract Event Sour cedAggr egat eRoot

The Abstract Event Sour cedAggr egat eRoot implements all methods on the
Event Sour cedAggr egat eRoot interface. It defines an abstract handl e() method, which you need

Axon Framework 1.2 Reference Guide 18

to implement with the actual logic to apply state changes based on domain events. When you extend
the Abst r act Event Sour cedAggr egat eRoot , you can register new events using appl! y() . This
method will register the event to be committed when the aggregate is saved, and will call the handl e()

method with the event as parameter. You need to implement this handl e() method to apply the state
changes represented by that event. Below is a sample implementation of an aggregate.

public class MyAggregat eRoot extends Abstract Event Sour cedAggr egat eRoot {
private String soneProperty;

publ i c MyAggregat eRoot () {
appl y(new MyAggr egat eCr eat edEvent ());

}

publ i c MyAggregat eRoot (UUI D identifier) {
super (identifier);

}

public void handl e(Donai nEvent event) {
if (event instanceof MyAggregateCreatedEvent) {
/1 do sonething with someProperty

}

/1 and nore if-else-if logic here

Abst r act Annot at edAggr egat eRoot

As you see in the example above, the implementation of the handl e() method can become
quite verbose and hard to read. The Abstract Annot at edAggr egat eRoot can help. The
Abst ract Annot at edAggr egat eRoot isaspeciaization of the Abst r act Aggr egat eRoot that
provides @vent Handl er annotation support to your aggregate. Instead of asinglehandl| e() method,
you can split the logic in separate methods, with names that you may define yourself. Just annotate the
event handler methods with @vent Handl er , and the Abst r act Annot at edAggr egat eRoot will
invoke the right method for you.

@ Note

Note that @vent Handl er annotated methods on an
Abst r act Annot at edAggr egat eRoot are only called when events are applied directly
to the aggregate locally. This should not be confused with annotating event handler methods
on Event Li st ener classes, in which case event handler methods handle events dispatched
by the Event Bus. See Section 6.2, “Event Listeners’.

public class MyAggregat eRoot extends Abstract Annot at edAggr egat eRoot {
private String soneProperty;

publ i c MyAggregat eRoot () {
appl y(new MyAggr egat eCr eat edEvent ());
}

Axon Framework 1.2 Reference Guide 19

publ i c MyAggregat eRoot (UUID identifier) {
super (i dentifier);

}

@event Handl er
private voi d handl eM/Aggr egat eCr eat edEvent (MyAggr egat eCr eat edEvent event) {
/1 do sonething with sonmeProperty

}

In al circumstances, exactly one event handler method is invoked. The
Abst ract Annot at edAggr egat eRoot will search the most specific method to invoke, in the
following order:

1. Onthe actual instance level of the class hierarchy (asreturned by t hi s. get Cl ass()), al annotated
methods are evaluated

2. If one or more methods are found of which the parameter is of the event type or a super type, the method
with the most specific typeis chosen and invoked

3. If no methods are found on this level of the class hierarchy, the super type is evaluated the same way

4. When the leved of the Abst r act Annot at edAggr egat eRoot is reached, and no suitable event
handler is found, the event isignored.

Event handler methods may be private, as long as the security settings of the JVM alow the Axon
Framework to change the accessibility of the method. This allows you to clearly separate the public API of
your aggregate, which exposes the methods that generate events, from the internal logic, which processes
the events.

4.2.3. Complex Aggregate structures

Complex business|ogic often requires more than what an aggregate with only an aggregate root can provide.
In that case, it important that the complexity is spread over anumber of entities within the aggregate. When
using event sourcing, not only the aggregate root needs to use event to trigger state transitions, but so does
each of the entities within that aggregate.

Axon provides support for event sourcing in complex aggregate structures. All entities
other than the aggregate root need to extend from Abstract Event SourcedEntity. The
Event Sour cedAggr egat eRoot implementations provided by Axon Framework are aware of these
entities and will call their event handlers when needed.

When an entity (including the aggregate root) applies an Event, it is registered with the Aggregate Root.
The aggregate root appliesthe event locally first. Next, it will evaluate all itsfieldsfor any implementations
of Abst ract Event Sour cedEnt i ty and handle the event on them. Each entity does the same thing
to itsfields.

Axon Framework 1.2 Reference Guide 20

To register an Event, the Entity must know about the Aggregate Root. Axon will automatically register the
Aggregate Root with an Entity before applying any Events to it. This means that Entities (unlike usual in
the Aggregate Root) should never apply an Event in their constructor. Non-Aggregate Root Entities should
be created in an @vent Handl er annotated method in their parent Entity. Axon will ensure that the
Aggregate Root is properly registered in time.

Axon will automatically detect most of the child entities in the fields of an Entity (albeit aggregate root or
not). The following Entities are found:

« directly referenced in afield,;
» insidefieldscontaining an | t er abl e (which includes all collections, such as Set , Li st , efc);

* inside both they keys and the values of fields containingaj ava. uti | . Map

If you reference an Entity from any other location than the above mentioned, you can override the
get Chi Il dEntities() method. This method should return aCol | ect i on of entities that should be
notified of the Event. Note that each entity is invoked once for each time it is located in the returned
Col | ecti on.

Axon Framework 1.2 Reference Guide 21

5. Repositories and Event Stores

The repository is the mechanism that provides access to aggregates. The repository acts as a gateway to
the actual storage mechanism used to persist the data. In CQRS, the repositories only need to be able to
find aggregates based on their unique identifier. Any other types of queries should be performed against
the query database, not the Repository.

In the Axon Framework, all repositories must implement the Repository interface. This
interface prescribes three methods:| oad(i denti fi er, version), load(identifier)
andadd(aggr egat €) . The | oad methods allows you to load aggregates from the repository. The
optional ver si on parameter is used to detect concurrent modifications (seeSection 5.5, “Advanced
conflict detection and resolution™). add is used to register newly created aggregates in the repository.

Depending on your underlying persistence storage and auditing needs, there are a number of base
implementations that provide basic functionality needed by most repositories. Axon Framework makes
a distinction between repositories that save the current state of the aggregate (seeSection 5.1, “ Standard
repositories’), and those that store the events of an aggregate (seeSection 5.2, “Event Sourcing
repositories’).

Note that the Repository interface does not prescribe a del et e(i denti fi er) method. Deleting
aggregates is done by invoking the (protected) mar kDel et ed() method in an aggreate. This method
is protected and not available from outside the aggregate. The motivation for this, is that the aggregate is
responsible for maintaining its own state. Deleting an aggregate is a state migration like any other, with
the only difference that it is irreversible in many cases. Y ou should create your own meaningful method
on your aggregate which sets the aggregate's state to "deleted". This also allows you to register any events
that you would like to have published.

Repositories should use the isDel eted() method to find out if an aggregate has been
marked for deletion. If such an aggregate is then loaded again, the repository should throw
an Aggr egat eNot FoundExcepti on (or when possible, an Aggr egat eDel et edExcept i on).
Axon's standard repository implementations will delete an aggregate from the repository, while event
sourcing repositories will append a special Aggr egat eDel et edEvent to the event store.

5.1. Standard repositories

Standard repositories store the actual state of an Aggregate. Upon each change, the new state will overwrite
the old. Thismakesit possible for the query components of the application to use the same information the
command component also uses. This could, depending on the type of application you are creating, be the
simplest solution. If that is the case, Axon provides some building blocks that help you implement such
arepository.

Axon Framework 1.2 Reference Guide 22

Abstract Repository

The most basic implementation of the repository is AbstractRepository. It takes care of the event
publishing when an aggregate is saved. The actual persistence mechanism must still be implemented. This
implementation doesn't provide any locking mechanism and expects the underlying data storage mechanism
to provideit.

Locki ngRepository

If the underlying data store does not provide any |ocking mechanism to prevent concurrent modifications of
aggregates, consider using the abstract Locki ngReposi t or y implementation. Besides providing event
dispatching logic, it will also ensure that aggregates are not concurrently modified.

Y ou can configurethe Locki ngReposi t or y to use an optimistic locking strategy, or a pessimistic one.
When the optimistic lock detects concurrent access, the second thread saving an aggregate will receive
a ConcurrencyExcepti on. The pessimistic lock will prevent concurrent access to the aggregate
alltogether. The pessimistic locking strategy is the default strategy.

/tv Event ordering and optimistic locking strategy

Note that the optimistic lock doesn't lock any threads at all. While this reduces contention, it
also means that the thread scheduler of your underlying architecture (OS, CPU, etc) isfreeto
schedule threads as it sees fit. In high-concurrent environments (many threads accessing the
same aggregate simultaneously), this could lead to events not being dispatched in exactly the
same order asthey are generated. If this guaranteeisimportant, use pessimistic locking instead.

@ ConcurrencyException vs ConflictingM odificationException

Note that there is a clear digtinction between a ConcurrencyException and a
ConflictingMdificationException. The first is used to indicate a repository
cannot save an aggregate, because the changesit containswere not applied to the latest avail able
version. The latter indicates that the loaded aggregate contains changes that might not have
been seen by the end-user. See Section 5.5, “ Advanced conflict detection and resolution” for
more information.

Generi cJpaRepository

This is a repository implementation that can store JPA compatible Aggregates, such as
Abst ract JpaAggr egat eRoot subclasses. It is configured with an Ent i t yManager to manage the
actual persistence, and a class specifiying the actual type of Aggregate stored in the Repository.

Axon Framework 1.2 Reference Guide 23

5.2. Event Sourcing repositories

Aggregate rootsthat implement the Event Sour cedAggr egat eRoot interface can bestoredin an event
sourcing repository. Those repositories do not store the aggregate itself, but the series of events generated
by the aggregate. Based on these events, the state of an aggregate can be restored at any time.

Event Sour ci ngRepository

The Event Sour ci ngReposi t ory implementation provides the basic functionality needed by any
event sourcing repository in the AxonFramework. It depends on an Event St or e (seeSection 5.3,
“Event store implementations’), which abstracts the actual storage mechanism for the events and
anAggr egat eFact or y, which isreponsible for creating uninitialized aggregate instances.

The AggregateFactory specifies which aggregate needs to be created and how. Once an aggregate has been
created, the Event Sour ci ngReposi t ory can initidize is using the Events it loaded from the Event
Store. Axon Framework comes with a number of AggregateFactory implementations that you may use. If
they do not suffice, it isvery easy to create your own implementation.

Cachi ngEvent Sour ci hgRepository

Initializing aggregates based on the events can be atime-consuming effort, compared to the direct aggregate
loading of the simple repository implementations. The Cachi ngEvent Sour ci ngReposi tory
provides a cache from which aggregates can be loaded if available. You can configure any jcache
implementation with this repository. Note that this implementation can only use caching in combination
with a pessimistic locking strategy.

@ Note

Using a cache with optimistic locking would create undesired side-effects. Optimistic locking
allows concurrent accessto objects and will only fail when two threads have concurrently made
any modificationsto that object. When using acache, both threadswill receive the sameinstance
of the object. They will both apply their changes to that same instance, potentialy interfering
with eachother.

CGeneri cAggr egat eFactory

The Generi cAggr egat eFact ory is a specia Aggr egat eFact ory implementation that can be
used for any type of Event Sourced Aggregate Root. There is however, a convention that these
Event Sour cedAggr egat eRoot classes must adhere to: the type must declare an accessible
constructor acceptingan Aggr egat el dent i f i er assingleparameter. Thisconstructor may not perform
any initialization on the aggregate, other than setting the identifier.

The GenericAggregateFactory is suitable for most scenarios where aggregates do not need special injection
of non-serializable resources.

Axon Framework 1.2 Reference Guide 24

Spri ngPr ot ot ypeAggr egat eFact ory

Depending on your architectural choices, it might be useful to inject dependencies into your aggregates
using Spring. Y ou could, for example, inject query repositories into your aggregate to ensure the existance
(or inexistance) of certain values.

To inject dependencies into your aggregates, you need to configure a prototype bean of your aggregate
root in the Spring context that also defines the Spri ngPr ot ot ypeAggr egat eFact ory. Instead of
creating regular instances of using a constructor, it uses the Spring Application Context to instantiate your
aggregates. Thiswill also inject any dependenciesin your aggregate.

Implementing your own Aggr egat eFactory

In some cases, the Gener i cAggr egat eFact ory just doesn't deliver what you need. For example,
you could have an abstract aggregate type with multiple implementations for different scenarios (e.g.
Publ i cUser Account and BackOf fi ceAccount both extending anAccount). Instead of creating
different repositories for each of the aggregates, you could use a single repository, and configure an
AggregateFactory that is aware of the different implementations.

The AggregateFactory must specify the aggregate type identifier. Thisisa String that the Event Store needs
to figure out which events belong to which type of aggregate. Typically, this name is deducted from the
abstract super-aggregate. In the given example that could be: Account.

The bulk of the work the Aggregate Factory does is creating uninitialized Aggregate instances. It must do
S0 using a given aggregate identifier and the first Event from the stream. Usually, this Event is a creation
event which contains hints about the expected type of aggregate. Y ou can use this information to choose
an implementation and invoke its constructor. Make sure no Events are applied by that constructor; the
aggregate must be uninitialized.

Hybri dJpaRepository

The Hybri dJpaReposi t ory is a combination of the Generi cJpaRepository and an Event
Sourcing repository. It can only deal with event sourced aggregates, and stores them in a relational model
aswell asin an event store. When the repository reads an aggregate back in, it uses the relational model
exclusively.

Thisrepository removes the need for Event Upcasters, making data migrations potentially easier. Since the
aggregates are event sourced, you keep the ability to use the given-when-then test fixtures (seeChapter 8,
Testing). On the other hand, since it doesn't use the event store for reading, it doesn't allow for automated
conflict resolution.

5.3. Event store implementations

Event Sourcing repositories need an event store to store and load events from aggregates. Typically, event
stores are capable of storing events from multiple types of aggregates, but it is not a requirement.

Axon Framework 1.2 Reference Guide 25

Axon provides two implementations of event stores, both are capable of storing al domain events (those
that extend the Domai nEvent class). These event storesusea Ser i al i zer to seridlize and deserialize
the event. By default, Axon provides an implementation of the Event Serializer that serializes events to
XML: the XSt r eanEvent Seri al i zer.

Fi | eSyst enEvent St ore

TheFi | eSyst enEvent St or e storestheeventsin afileonthefile system. It provides good performance
and easy configuration. The downside of this event store isthat is does not provide transaction support and
doesn't cluster very well. The only configuration needed is the location where the event store may store its
filesand the serializer to use to actually serialize and deserialize the events. Note that the provided url must
end on adlash. Thisisdueto the way Spring's Resour ce implementations work.

JpaEvent Store

The JpaEvent St or e stores events in a JPA-compatible data source. Unlike the file system version,
the JPAEvent St or e supports transactions. The JPA Event Store stores events in so called entries.
These entries contain the serialized form of an event, as well as some fields where meta-data is stored for
fast lookup of these entries. To use the JpaEvent St or e, you must have the j avax. per si st ence
annotations on your classpath.

By default, the event store needs you to configure your persistence context (defined in META- | NF/
per si st ence. xm file) to contain the classes Donai nEvent Ent ry and Snapshot Event Entry
(bothinthe or g. axonf r amewor k. event st or e. j pa package).

Below is an example configuration of a persistence context configuration:

<persi stence xm ns="http://java. sun.conl xm / ns/ persi stence" version="1.0">
<persi stence-unit name="event Store"[transaction-type="RESOURCE LOCAL">
<cl ass>org...eventstore.jpa. Domai nEvent Entry</cl ass> [
<cl ass>org. .. eventstore.jpa. Snapshot Event Ent ry</cl ass>
</ per si st ence- uni t >
</ per si st ence>

0 Inthissample, thereisis specific persistence unit for the event store. Y ou may, however, choose to
add the third line to any other persistence unit configuration.

0 This line registers the Domai nEvent Ent ry (the class used by thelpaEvent St or e) with the
persistence context.

@ Detecting duplicate key violationsin the database

Axon uses Locking to prevent two threads from accessing the same Aggregate. However, if
you have multiple JVMs on the same database, this won't help you. In that case, you'd have
to rely on the database to detect conflicts. Concurrent access to the event store will result in
aKey Constraint Violation, as the table only allows a single Event for an aggregate with any

Axon Framework 1.2 Reference Guide 26

segquence number. Inserting a second event for an existing aggregate with an existing sequence
number will result in an error.

The JPA EventStore can detect this error and translate it to a ConcurrencyException.
However, each database system reports this violation differently. If you register your
DataSource with the JpaEventStore, it will try to detect the type of database and figure out
which error codes represent a Key Constraint Violation. Alternatively, you may provide a
PersistenceExceptionTranslator instance, which can tell if a given exception represents a Key
Constraint Violation.

If no DataSource or PersistenceExceptionTranglator is provided, exceptions from the Database
driver are thrown as-is.

Customizing the Event storage

By default, the JPA Event Store stores entries in Donai nEvent Ent ry and Snapshot Event Entry
entities. Whilestill will sufficein many cases, you might encounter asituation where the meta-data provided
by these entities is not enough. Or you might want to store events of different aggregate types in different
tables.

If that is the case, you may provide your own implementation of Event Ent r ySt or e in the JPA Event
Store's constructor. Y ou will need to provide implementations of methods that load and store serialized
events. Check the API Documentation of the Event Ent r y St or e classfor implementation requirements.

/1y Memory consumption warning

Note that persistence providers, such as Hibernate, use a first-level cache on their
EntityManager implementation. Typically, this means that all entities used or returned in
gueries are attached to the EntityManager. They are only cleared when the surrounding
transaction is committed or an explicit "clear" in performed inside the transaction.

Towork around thisissue, make sureto exclusively query the serialized form (thebyt e[]) of
events. Do not fetch the entire entity object. Alternatively, call Ent i t yManager . f1 ush()
and Enti t yManager. cl ear () after fetching a batch of events. Failure to do so might
result in Qut OF Menor yExcept i onswhen loading large streams of events.

Implementing your own event store

If you have specific requirements for an event store, it is quite easy to implement one using different
underlying data sources. Reading and appending events is done using a Dormai nEvent St r eam which
is quite similar to iterator implementations.

Axon Framework 1.2 Reference Guide 27

f.;?' Ti p

The Si npl eDonmai nEvent St r eamclass will make the contents of a sequence (Li st or
ar r ay) of Donmai nEvent instances accessible as event stream.

Influencing the serialization process

Event Stores need a way to seridize the Domain Event to prepare it for storage. By default,
Axon uses the XSt r eanEvent Seri al i zer, which uses XStream (see xstream.codehaus.org [http://
xstream.codehaus.org/]) to serialize Domain Events into XML and vice versa. X Stream is reasonably fast
and is more flexible than Java Serialization. Furthermore, the result of XStream serialization is human
readable. Quite useful for logging and debugging purposes.

The XStreamEventSerializer can be configured. Y ou can define aliases it should use for certain packages,
classes or even fields. Besides being a nice way to shorten potentially long names, aliases can also be used
when class definitions of event change. For more information about aliases, visit the XStream website:
xstream.codehaus.org [http://xstream.codehaus.org/].

You may also implement your own Event Seridizer, simply by creating a class that implements
Seri al i zer, and configuring the Event Store to use that implementation instead of the defaullt.

Changing the definition of Events

Itisnot unlikely that a definition of an Event remains unchanged during the entire lifespan of an application.
New insights, changes in requirements and many other factors can lead to modifications in Events. Since
the Event Store is considered aread and append-only data source, your application must be able to read all
events, regardless of when they have been added.

In Axon, Events have a revision, a numeric value that defaults to 0. If an Event definition changes,
you should update the revision number too. The deserialization process can then be adapted when your
application needs to cope with old revisions of events. A class file for an Event only needs to support
the latest revision. When old revisions are deserialized, they can be "upcasted" to the newer revision. The
revision number of an Event is provided to the constructor on the abstract event classes. The revision of an
event is passed as a parameter in the constructor of Dormai nEvent .

The Event Upcaster is responsible for transforming old events into the last revision.
Upcasters typically work on an intermediate representation of the Event. In the case of
the XStreanEvent Seri ali zater, this intermediate representation is dom4j (see http://
domdj.sourceforge.net/ [http://domdj.sourceforge.net/]), an easy to use java XML library that integrates
nicely with XStream. The Event Upcast er can modify the XML structure of the event so that it matches
the new definition.

Axon Framework 1.2 Reference Guide 28

http://xstream.codehaus.org/
http://xstream.codehaus.org/
http://xstream.codehaus.org/
http://xstream.codehaus.org/
http://xstream.codehaus.org/
http://dom4j.sourceforge.net/
http://dom4j.sourceforge.net/
http://dom4j.sourceforge.net/

5.4. Snapshotting

When aggregateslivefor along time, and their state constantly changes, they will generate alarge amount of
events. Having to load all these eventsin to rebuild an aggregate's state may have abig performance impact.
The snapshot event is a domain event with a special purpose: it summarises an arbitrary amount of events
into asingle one. By regularly creating and storing a snapshot event, the event store does not have to return
long lists of events. Just the last snapshot events and all events that occurred after the snapshot was made.

For example, itemsin stock tend to change quite often. Each time an item is sold, an event reduces the stock
by one. Every time a shipment of new items comes in, the stock is incremented by some larger number.
If you sell a hundred items each day, you will produce at least 100 events per day. After a few days,
your system will spend too much time reading in all these events just to find out wheter it should raise an
"ItemOutOfStockEvent”. A single snapshot event could replace a lot of these events, just by storing the
current number of itemsin stock.

5.4.1. Creating a snapshot

Snapshot creation can be triggered by a number of factors, for example the number of events created since
the last snapshot, the time to initialize an aggregate exceeds a certain threshold, time-based, etc. Currently,
Axon provides a mechanism that allows you to trigger snapshots based on an event count threshold.

The Event Count Snapshot t er Tri gger provides the mechanism to trigger snapshot creation when
the number of events needed to |oad an aggregate exceeds acertain threshold. If the number of events needed
to load an aggregate exceeds a certain configurable threshold, the trigger tellsa Snapshot t er to create
a snapshot for the aggregate.

The snapshot trigger is configured on an Event Sourcing Repository and has a number of properties that
allow you to tweak triggering:

* Snapshott er sets the actual snapshotter instance, responsible for creating and storing the actual
snapshot event;

» Trigger setsthethreshold at which to trigger snapshot creation;

» Cl ear Count er sAft er Append indicates whether you want to clear counters when an aggregate
is stored. The optimal setting of this parameter depends mainly on your caching strategy. If you do
not use caching, there is no problem in removing event counts from memory. When an aggregate is
loaded, the events are loaded in, and counted again. If you use a cache, however, you may lose track
of counters. Defaultstot r ue unlessthe Aggr egat eCache or Aggr egat eCaches isset, inwhich
caseit defaultstof al se.

» Aggr egat eCache and Aggr egat eCaches alowsyouto register the cache or cachesthat you useto
store aggregatesin. The snapshotter trigger will register itself asalistener on the cache. If any aggregates
are evicted, the snapshotter trigger will remove the counters. This optimizes memory usage in the case

Axon Framework 1.2 Reference Guide 29

your application has many aggregates. Do note that the keys of the cache are expected to bethe Aggregate
Identifier.

A Snapshotter is responsible for the actual creation of a snapshot. Typically, snapshotting is a process
that should disturb the operational processes as little as possible. Therefore, it is recommended to
run the snapshotter in a different thread. The Snapshott er interface declares a single method:
schedul eSnapshot () , which takes the aggregate's type and identifier as parameters.

Axon provides theAggr egat eSnapshotter, which creates and stores Aggr egat eSnapshot
instances. Thisis a special type of snapshot, since it contains the actual aggregate instance within it. The
repositories provided by Axon are aware of this type of snapshot, and will extract the aggregate from it,
instead of instantiating a new one. All eventsloaded after the snapshot events are streamed to the extracted
aggregate instance.

@ Note
Do make sure that the Serializer instance you use (which defaults to
the XStreanEvent Serializer) is capable of serializing your aggregate. The
XSt reanEvent Seri al i zer requiresyou to use either aSun JVM, or your aggregate must
either have an accessible default constructor or implement the Ser i al i zabl e interface.

The AbstractSnapshotter provides a basic set of properties that allow you to tweak the way snapshots are
created:

» Event St or e sets the event store that is used to load past events and store the snapshots. This event
store must implement the Snapshot Event St or e interface.

» Execut or sets the executor, such as a Thr eadPool Execut or that will provide the thread
to process actual snapshot creation. By default, snapshots are created in the thread that calls the
schedul eSnapshot () method, which is generally not recommended for production.

The Aggr egat eSnapshot t er provideson more property:

» Aggr egat eFact ori es isthe property that allows you to set the factories that will create instances
of your aggregates. All Axon provided repositoriesimplement the Aggr egat eFact or y interface, and
are capable of processing Aggr egat eSnapshot s. Configuring multiple aggregate factories allows
you to use a single Snapshotter to create snapshots for a variety of aggregate types.

@ Note

If you use an executor that executes snapshot creation in another thread, make sure you
configure the correct transaction management for your underlying event store, if necessary.
Spring userscan usethe Spr i ngAggr egat eSnapshot t er , which alowsyouto configure
a Pl at formlransacti onManager. The Spri ngAggr egat eSnapshotter will
autowire all repositores, if they are not explicitly configured.

Axon Framework 1.2 Reference Guide 30

Spring users should use the Spr i ngAggr egat eSnapshot t er instead. See Section 9.8, “ Configuring
Snapshotting” for more details about configuring snapshotting in Spring.

5.4.2. Storing Snapshot Events

BoththeJpaEvent St or e and the Fi | eSyst enEvent St or e are capable of storing snapshot events.
They provide a special method that allows a Dorrai nEvent to be stored as a snapshot event. Y ou have to
initialize the snapshot event completely, including the aggregate identifier and the sequence number. There
isaspecial constructor on the Dormai nEvent for this purpose. The sequence number must be equal to the
sequence number of the last event that was included in the state that the snapshot represents. In most cases,
you can usethe get Last Commi t t edEvent SequenceNunber () onthe Ver si onedAggr egat e
(which each event sourced aggregate implements) to obtain the sequence number to use in the snapshot
event.

When a snapshot is stored in the Event Store, it will automatically use that snapshot to summarize al
prior events and return it in their place. Both event store implementations allow for concurrent creation of
snapshots. Thismeansthey allow snapshotsto be stored while another processisadding Eventsfor the same
aggregate. This allows the snapshotting process to run as a separate process alltogether.

@ Note

Normally, you can archive al events once they are part of asnapshot event. Snapshotted events
will never beread in again by the event storein regular operational scenario's. However, if you
want to be able to reconstruct aggregate state prior to the moment the snapshot was created,
you must keep the events up to that date.

Axon provides a specia type of snapshot event: the Aggr egat eSnapshot , which stores an entire
aggregate as a snapshot. The motivation is simple: your aggregate should only contain the state relevant to
take business decisions. Thisisexactly theinformation you want captured in asnapshot. All Event Sourcing
Repositories provided by Axon recognizethe Aggr egat eSnapshot , and will extract the aggregate from
it. Beware that using this snapshot event requires that the event serialization mechanism needs to be able
to serialize the aggregate.

5.4.3. Initializing an Aggregate based on a Snapshot Event

Every snapshot event is a Donmai nEvent instance. That means a snapshot event is handled just like any
other domain event. When using annotations to demarcate event handers (@vent Handl er), you can
annotate a method that initializes full aggregate state based on a snapshot event. The code sample below
shows how snapshot events are treated like any other domain event within the aggregate.

public class MyAggregat e extends Abstract Annot at edAggr egat eRoot {

/1 ... code onmitted for brevity

@vent Handl er

Axon Framework 1.2 Reference Guide 31

protected voi d handl eSoneSt at eChangeEvent (MyDomai nEvent event) {
1.

}

@vent Handl er

protected void appl ySnapshot (MySnapshot Event event) {
/'l the snapshot event should contain all relevant state
this.sonmeState = event. soneSt at e;
this.otherState = event. ot her St at e;

There is one type of snapshot event that is treated differently: the Aggr egat eSnapshot . This type of
snapshot event contains the actual aggregate. The repository recognizes this type of event and extract the
aggregate from the snapshot. Then, al other events are re-applied to the extracted snapshot. That means
aggregates never need to be able to deal with Aggr egat eSnapshot instances themselves.

5.4.4. Pruning Snapshot Events

Once a snapshot event is written, it prevents older events and snapshot events from being read. Domain
Events are till used in case a snapshot event becomes obsolete due to changes in the structure of an
aggregate. The older snapshot events are hardly ever needed. Snapshot Event St or e implementation
may choose to keep only alimited amount of snapshots (e.g. only one) for each aggregate.

The JpaEvent St ore alows you to configure the amount of snapshots to keep per aggregate.
It defaults to 1, meaning that only the latest snapshot event is kept for each aggregate. Use
set MaxSnapshot sAr chi ved(i nt) to change this setting. Use a negative integer to prevent pruning
altogether.

5.5. Advanced conflict detection and resolution

Oneof themajor advantages of being explicit about the meaning of changes, isthat you can detect conflicting
changes with more precision. Typically, these conflicting changes occur when two users are acting on the
same data (nearly) simultaneously. Imagine two users, both looking at a specific version of the data. They
both decide to make a change to that data. They will both send a command like "on version X of this
aggregate, do that", where X is the expected version of the aggregate. One of them will have the changes
actually applied to the expected version. The other user won't.

Instead of simply rejecting all incoming commandswhen aggregates have been modified by another process,
you could check whether the user's intent conflicts with any unseen changes. One way to do this, isto apply
the command on the latest version of the aggregate, and check the generated events against the events that
occurred since the version the user expected. For example, two userslook at a Customer, which hasversion
4. One user notices a typo in the customer's address, and decides to fix it. Another user wants to register
the fact that the customer moved to another address. If the fist user applied his command first, the second
onewill make the change to version 5, instead of the version 4 that he expected. This second command will

Axon Framework 1.2 Reference Guide 32

generate a CustomerMovedEvent. This event is compared to all unseen events: AddressCorrectedEvent, in
this case. A ConflictResolver will compare these events, and decide that these conflicts may be merged. If
the other user had committed first, the ConflictResolver would have decided that a AddressCorrectedEvent
on top of an unseen CustomerMovedEvent is considered a conflicting change.

Axon provides the necessary infrastructure to implement advanced conflict detection. By default, al
repositories will throw a Confli cti nghbdi fi cati onExcepti on when the version of a loaded
aggregateisnot equal to the expected version. Event Sourcing Repositories offer support for more advanced
conflict detection, as decribed in the paragraph above.

To enable advanced conflict detection, configure a ConflictResolver on the
Event Sour ci ngReposi tory. This Conf |l i ct Resol ver is responsible for detecting conflicting
modifications, based on the events representing these changes. Detecting these conflicts is a matter of
comparing the two lists of DomainEvents provided inther esol veConf | i ct s method declared on the
Conflict Resol ver. If such aconflict isfound, aConf | i cti nghbdi fi cati onExcepti on (or
better, amore explicit and explanatory subclass of it) must bethrown. If theConf | i ct Resol ver returns
normally, the events are persisted, effectively meaning that the concurrent changes have been merged.

Axon Framework 1.2 Reference Guide 33

6. Event Processing

The Events generated by the application need to be dispatched to the components that update the
guery databases, search engines or any other resources that need them: the Event Listeners. This is the
responsibility of the Event Bus. Axon Framework provides an Event Bus and some base classes to help
you implement Event Listeners.

6.1. Event Bus

TheEvent Bus isthe mechanism that dispatches eventsto the subscribed event listeners. Axon Framework
provides two implementation of the event bus. Si npl eEvent Bus and O ust eri ngEvent Bus.
Both implementations manages subscribed Event Li st ener s and forward all incoming events to all
subscribed listeners. This means that Event Listeners must be explicitly registered with the Event Busin
order for themto receive events. Theregistration processisthread safe. Listenersmay register and unregister
for events at any time.

6.1.1. Simple Event Bus

TheSi npl eEvent Bus is, asthe name suggests, avery basic implementation of the Event Bus interface.
It just dispatches each incoming Event to each of the subscribed Event Li st ener s sequentiall. If an
EventListener throwsan Except i on, dispatching stops and the exception is propagated to the component
publising the Event .

The Si npl eEvent Bus issuitablefor most caseswhere dispatching isonly donelocally, inasingle WM.
Once you application requires Event s to be published across multiple JVMs, you could consider using
the Cl ust er i ngEvent Bus instead.

6.1.2. Clustering Event Bus

The Cl ust eri ngEvent sBus alows application developers to bundle EventLi steners into
C ust er sbased ontheir properties and non-functional requirements. The ClusteringEventBusisalso more
capable to deal with Events being dispatched among different machines.

The ClusteringEventsBus contains two mechanisms. the O ust er Sel ect or , which selectsaC ust er
instance for each of the registered Event Li st eners, and the Event BusTer mi nal , which is
responsible for dispatching Events to each of the relevant clusters.

@ Background: Axon Terminal
In the nervous system, an Axon (one of the components of a Neuron) transports electrical

signals. These Neurons are interconnected in very complex arrangements. The Axon Terminal
is responsible for transmitting these signals from one Neuron to another.

Axon Framework 1.2 Reference Guide 34

More information: www.wikipedia.org/wiki/Axon_terminal.
Cl ust er Sel ect or

The primary responsibility of theCl ust er Sel ect or isto, asthe name suggests, select acluster for each
Event Listener that subscribesto the Event Bus. By default, all Event Listenersare placed in asingle Cluster
instance, which dispatches events to its members sequentially and in the calling thread (similar to how the
Si mpl eEvent Bus works). By providing a custom implementation, you can arrange the Event Listeners
into different Cluster instances to suit the requirements of your architecture.

At this moment, there is a single implementation of the Cl ust er interface: Si npl eCl ust er. This
implementation calls each EventListener sequentially in the calling thread. By adding information in the
Meta Data of a cluster, the selector can provide hintsto the Terminal about the expected behavior.

Event BusTer m nal

The Event BusTer i nal forms the bridge between the events being dispatched and the Clustersinside
the Event Bus. The terminal is aware of any remoting technologies used, such as IMS, AMQP, etc. The
default implementation dispatches published events to each of the (local) clusters using the publishing
thread. This means that with the default terminal, and the default Cl ust er Sel ect or, the behavior of
the d ust eri ngEvent Bus isexactly the same as that of the Si npl eEvent Bus.

In a typical AMQP based configuration, the Event BusTer mi nal would send published events to an
Exchange. For each cluster, a Queue would be connected to that exchange. The Event BusTer ni nal
will create a consumer for each cluster, which reads from its related Queue and forwards each message
to that cluster. Event Listenersin a distributed environment where at most one instance should receive an
Events should be placed in a separate cluster, which competes with the other instances on a single Queue.

6.2. Event Listeners

Event listeners are the component that act on incoming events. These events may be of any type of the
events mentioned in Section 4.1, “Events’. In the Axon Framework, all event listeners must implement the
Event Li st ener interface.

6.2.1. Basic configuration

Event listeners need to be registered with an event bus (see Section 6.1, “Event Bus’) to be notified of
events. Axon provides a base implementation that take care of this, and other things, for you.

Annot at i onEvent Li st ener Adapt er

The Annot at i onEvent Li st ener Adapt er can wrap any object into an event listener. The adapter
will invoke the most appropriate event handler method available. These event handler methods must be

Axon Framework 1.2 Reference Guide 35

www.wikipedia.org/wiki/Axon_terminal

annotated with the @Event Handl er annotation and are resolved according to the same rules that count
for annotated aggregate roots (see the section called * AbstractAnnotatedAggregateRoot ™).

The constructor of the Annot at i onEvent Li st ener Adapt er takes two parameters: the annotated
bean, and the Event Bus, to which the listener should subscribe. Y ou can subscribe and unsubscribe the
event listener using thesubscri be() andunsubscri be() methods on the adapter.
Q Tip
If you use Spring, you can automatically wrap all annotated event listeners with an
adapter automatically by adding <axon: annot ati on-confi g/ > to your application

context. Axon will automatically find and wrap annotated event listeners inside an
Annot at i onEvent Li st ener Adapt er and register them with an event bus.

6.2.2. Asynchronous event processing

By default, event listeners process events in the thread that dispatches them. This means that the thread
that executes the command will have to wait untill all event handling has finished. For some types of event
listenersthisis not the optimal form of processing. Asynchronous event processing improves the scalability
of the application, with the penalty of added complexity to deal with "eventual consistency"”. With the Axon
Framework, you can easily convert any event handler into an asynchronous event handler by wrapping
itin an Asynchr onousEvent Handl er W apper or, when using annotations, adding the type-level
Asynchr onousEvent Li st ener annotation.

The Asynchr onousEvent Handl er W apper needs some extra configuration to make an event
handler asynchronous. The first thing that the wrapper needs is an Execut or, for example a
Thr eadPool Execut or . The second is the Sequenci ngPol i cy, a definition of which events may
be processed in parallel, and which sequentialy. The last one is optional: the Tr ansact i onManager ,
which enablesyou to run event processing within atransaction. The next pragraphswill provide moredetails
about the configuration options.

The Execut or isresponsible for executing the event processing. The actual implementation most likely
depends on the environment that the application runs in and the SLA of the event handler. An example
is the Thr eadPool Execut or, which maintains a pool of threads for the event handlers to use to
process events. The AsynchonousEvent Handl er W apper will manage the processing of incoming
eventsin the provided executor. If aninstance of aSchedul edThr eadPool Execut or isprovided, the
Asynchr onousEvent Handl er W apper will automatically leverageitsability to schedule processing
in the cases of delayed retries. See Section 6.2.3, “Managing transactions in asynchronous event handling”
for more information about transactions.

The Sequenci ngPol i cy defines whether events must be handled sequentidly, in paralel or a
combination of both. Policies return a sequence identifier of a given event. If two events have the same
sequence identifier, this means that they must be handled sequentialy be the event handler. A nul |
seguence identifier means the event may be processed in parallel with any other event.

Axon Framework 1.2 Reference Guide 36

Axon provides a number of common policies you can use:

 The Ful | ConcurrencyPolicy will tell Axon that this event handler may handle al events
concurrently. Thismeansthat thereis no relationship between the eventsthat require them to be processed
inaparticular order.

» The Sequent i al Pol i cy tells Axon that all events must be processed sequentially. Handling of an
event will start when the handling of a previous event is finished. For annotated event handlers, thisis
the default policy.

» Sequent i al Per Aggr egat ePol i cy will force domain events that were raised from the same
aggregate to be handled sequentially. However, events from different aggregates may be handled
concurrently. This is typically a suitable policy to use for event listeners that update details from
aggregates in database tables.

Besides these provided policies, you can define your own. All policies must implement

the Event Sequenci ngPolicy interface. This interfface defines a single method,

get Sequencel denti fi er For, that returns the identifier sequence identifier for a given event.

Events for which an equals sequence identifer is returned must be processed sequentially. Events that

produce a different sequence identifier may be processed concurrently. For performance reasons, policy

implementations should return nul | if the event may be processed in parallel to any other event. Thisis
faster, because Axon does hot have to check for any restrictions on event processing.

A Transact i onManager can be assigned to a Asynchr onousEvent Handl er W apper to add
transactional processing of events. To optimize processing, events can be processed in small batchesinside
atransaction. The transaction manager has the ability to influence the size of these batches and can decide
to either commit, skip or retry event processing based on the result of abatch. See Section 6.2.3, “Managing
transactions in asynchronous event handling” for more information.

Annotation support for concurrent processing

If you use the Annot ati onEvent Li st ener Adapt er, or <axon: annot at i on-confi g/ >, an
Execut or must be configured to allow asynchronous processing of events.

Y ou can configure the event sequencing policy on the @Asynchr onousEvent Li st ener annotation.
You then set the sequencePol i cyC ass to the type of policy you like to use. Note that you can only
choose policy classes that provide a public no-arg constructor.

@\synchronousEvent Li st ener (sequenci ngPol i cyd ass = MyCust onPol i cy. cl ass)
public class MyEventListener() ({

@:vent Handl er
public voi d onSonel nportant Event (MyEvent event) {
/'l event Processing | ogic
}
}

public class MyCustonPolicy inplenments Event Sequenci ngPolicy {

Axon Framework 1.2 Reference Guide 37

public Object getSequenceldentifierFor(Event event) {
if (event instanceof MyEvent) ({
/'l let's assune that we do processing based on the soneProperty field.
return ((MyEvent) event).sonmeProperty();

}

return null;

}

With annotation support, the event handler bean must also act as a transaction manager in order to support
transactions. There is annotation support for transaction management, too (see Section 6.2.3, “Managing
transactions in asynchronous event handling”).

6.2.3. Managing transactions in asynchronous event handling

In some cases, your event handlers have to store data in systems that use transactions. Starting and
committing atransaction for each single event has abig performanceimpact. In Axon, events are processed
in batches. The batch size depends of the number of events that need to be processed and the settings
provided by the event handler. By default, the batch size is set to the number of events available in the
processing queue at the time a batch starts.

@ Note

Typically, when using synchronous event handling, the transaction boundary is managed at the
Command Bus level. Asynchronous event handlers, on the other hand, run in another thread
and are often unable to act within the same transaction. The transaction managers used by
event handlers should not be confused with the transaction interceptors, which are used with
the Command Bus. See Section 3.5.1, “Transaction management” for more information about
transactions in the command bus.

In most cases, event handling is done using athread pool executor, or scheduler. The scheduler will schedule
batches of event processing as soon as event become available. When a batch is compl eted, the scheduler
will reschedule processing of the next batch, aslong as more events are available. The smaller abatch, the
more"fair" thedistribution of event handler processingis, but also the more scheduling overhead you create.

When an event listener is wrapped with the Asynchr onousEvent Handl er W apper, you can
configureaTr ansact i onManager tohandletransactionsfor the event listener. The transaction manager
can, based on the information in the Tr ansact i onSt at us object, decide to start, commit or rollback
atransaction to an external system.

The bef or eTr ansact i on(Transact i onSt at us) method is invoked just before Axon will start
handling an event batch. Y ou can use the TransactionStatus object to configure the batch beforeit is started.
For example, you can change the maximum number of events that may run in the batch.

The af t er Transacti on(Transacti onSt at us) method is invoked after the batch has been
processed, but before the scheduler has scheduled the next batch. Based on the vaue of
i sSuccessf ul (), you can decide to commit or rollback the underlying transaction.

Axon Framework 1.2 Reference Guide 38

Configuring transactional batches
There are a number of settings you can use onthe Tr ansact i onSt at us object.

You can configure a yielding policy, which gives the scheduler an indication of that to do when a
batch has finished, but more events are available for processing. Use DO_NOT_YI ELD if you want the
scheduler to continue processing immediately as long as new events are available for processing. The
Yl ELD_AFTER _TRANSACTI ON policy will tell the scheduler to reschedule the next batch for processing
when athread is available. The first will make sure events are processed earlier, while the latter provides a
fairer execution of events, as yielding provides waiting thread a chance to start processing. The choice of
yielding policy should be driven by the SLA of the event listener.

You can set the maximum number of events to handle within a transaction using
set MaxTransacti onSi ze(i nt). The default of this value is the number of events ready for
processing at the moment the transaction started.

Error handling

When an event handler throws an exception, for example because a data source is not available, the
transaction is marked as failed. In that case, i sSuccessful () onthe Transacti onSt at us object
will return f al se and get Excepti on() will return the exception that the scheduler caught. It is the
responsibility of the event listener to rollback or commit any active underlying transactions, based on the
information provided by these methods.

The event handler can provide apolicy set Ret ryPol i cy(RetryPol i cy) to tell the scheduler what
to do in such case. There are three policies, each for a specific scenario:

* RETRY_TRANSACTI ONtellsthe event handler scheduler that the entire transaction should be retried. It
will reschedule al the events in the current transaction for processing. This policy is suitable when the
event listener processes eventsto atransactional data source that rolls back an entire transaction.

 RETRY_LAST_EVENT isthe policy that tellsthe scheduler to only retry the last event in the transaction.
This is suitable if the underlying data source does not support transactions or if the transaction was
committed without the last event.

« SKI P_FAI LED EVENT will tell the scheduler to ignore the exception and continue processing with the
next event. The event listener can still try to commit the underlying transaction to persist any changed
made while processing other events in this transaction. This is the default policy.

Note that the SKI P_FAI LED_EVENT is the default policy. For event handlers that use an underlying
mechanism to perform actions, this might not be a suitable policy. Exceptions resulting from errors in
these underlying systems (such as databases or email clients) would cause events to be ignored when the
underlying system is unavailable. In error situations, the event listener should inspect the exception (using
the get Except i on() method) and decide whether it makes sense to retry processing of this event. If
that isthe case, it should set the RETRY_LAST_EVENT or RETRY_TRANSACTI ON policy, depending on
the transactional behavior of the underlying system.

Axon Framework 1.2 Reference Guide 39

When the chosen policy forces a retry of event processing, the processing is delayed by the number of
milliseconds defined inther et ryl nt er val property. The default interval is 5 seconds.

Manipulating transactions during event processing

Y ou can change transaction semantics event during event processing. This can be done in one of two ways,
depending on the type of event handler you use.

If you use the @vent Handl er annotation to mark event handler methods, you may use a second
parameter of type Tr ansact i onSt at us. If such parameter is available on the annotated method, the
current Tr ansact i onSt at us object is passed as a parameter.

Alternatively, you can usethe static Tr ansact i onSt at us. current () accessor to gain accessto the
status of the current transaction. Note that this method returnsnul | if there is no active transaction.

With the current transaction status, you can use the request|medi ateYield() and
request | nredi at eCommi t () methods to end the transaction after processing of the event. The
former will also tell the scheduler to reschedule the remainder of the events for another batch. The
latter will use the yield policy to see what needs to be done. Since the default yielding policy is
Yl ELD_AFTER_TRANSACTI ON, the behavior of both methodsisidentical when using these defaults.

Annotation support

As with many of the other supported features in Axon, there is also annotation support for transaction
management. Y ou have several options to configure transactions.

The first is to annotate methods on your EventListener with @Bef or eTransacti on and
@\f t er Transact i on. These methods will be called before and after the execution of a transactional
batch, respectively. The annotated methods may accept asingle parameter of typeTr ansact i onSt at us,
which provides access to transaction details, such as current status and configuration.

Alternatively, you can use an external Transaction Manager, which you assign to afield. If you annotate
that field with @r ansact i onManager , Axon will autodetect it and use it as transaction manager for
that listener. The transaction manager may be either one that implements the TransactionM anager interface,
or any other type that uses annotations.

Provided TransactionManager implementations

Currently, Axon Framework provides one TransactionManager implementation, the
SpringTransacti onManager . This implemenation uses Spring's
Pl at f or niTr ansact i onManager as underlying transaction mechanism. That means the
Spri ngTransacti onManager can manage any transactions in resources that Spring supports.

Axon Framework 1.2 Reference Guide 40

7. Managing complex business transactions

Not every command is able to completely execute in asingle ACID transaction. A very common example
that pops up quite often as an argument for transactions is the money transfer. It is often believed that an
atomic and consistent transaction is absolutely required to transfer money from one account to another.
Weéll, it'snot. On the contrary, it is quite impossible to do. What if money is transferred from an account on
Bank A, to another account on Bank B? Does Bank A acquire alock in Bank B's database? If the transfer
isin progress, isit strange that Bank A has deducted the amount, but Bank B hasn't deposited it yet? Not
really, it's "underway". On the other hand, if something goes wrong while depositing the money on Bank
B's account, Bank A's customer would want his money back. So we do expect some form of consistency,
ultimately.

While ACID transactions are not necessary or even impossible in some cases, some form of transaction
management is still required. Typically, these transactions are referred to as BASE transactions. Basic
Availability, Soft state, Eventual consistency. Contrary to ACID, BASE transactions cannot be easily rolled
back. To roll back, compensating actions need to be taken to revert anything that has occurred as part of
the transaction. In the money transfer example, afailure at Bank B to deposit the money, will refund the
money in Bank A.

In CQRS, Sagas are responsible for managing these BA SE transactions. They respond on Events produced
by Commands and may produce new commands, invoke external applications, etc. In the context of Domain
Driven Design, it is not uncommon for Sagas to be used as coordination mechanism between several
bounded contexts.

7.1. Saga

A Sagaisaspecial type of Event Listener: one that manages a busi ness transaction. Some transactions could
be running for days or even weeks, while others are completed within a few milliseconds. In Axon, each
instance of a Sagais responsible for managing a single business transaction. That means a Saga maintains
state necessary to manage that transaction, continuing it or taking compensating actions to roll back any
actions already taken. Typically, and contrary to regular Event Listeners, a Saga has a starting point and an
end, both triggered by Events. While the starting point of a Saga is usually very clear, while there could
be many ways for a Saga to end.

In Axon, all Sagas must implement the Saga interface. As with Aggregates, there is a Saga
implementation that allows you to annotate event handling methods with @agaEvent Handl er : the
Abst ract Annot at edSaga.

7.1.1. Life Cycle

Asasingle Sagainstance is responsible for managing a single transaction. That means you need to be able
to indicate the start and end of a Saga's Life Cycle.

Axon Framework 1.2 Reference Guide 41

The Abstract Annot at edSaga alows you to annotate Event Handlers with an annotation
(@agaEvent Handl er). If a specific Event signifies the start of a transaction, add another annotation
to that same method: @5t ar t Saga. This annotation will create a new saga and invoke its event handler
method when a matching Event is published.

By default, anew Sagaisonly started if no suitable existing Saga (of the same type) can be found. Y ou can
also force the creation of a new Saga instance by setting the f or ceNew property on the @bt ar t Saga
annotationtot r ue.

Ending a Saga can be done in two ways. If a certain Event always indicates the end of a Saga's life cycle,
annotate that Event's handler on the Sagawith @ndSaga. The Saga's Life Cycle will be ended after the
invocation of the handler. Alternatively, you cancall end() frominsidethe Sagato endthelifecycle. This
allows you to conditionally end the Saga.

@ Note

If you don't use annotation support, you need to properly configure your Saga Manager (see
Section 7.2.1, “ SagaManager” below). To end a Sagaslife cycle, make surethei sActi ve()
method of the Sagareturnsf al se.

7.1.2. Event Handling

Event Handling in a Saga is quite comparable to that of a regular Event Listener. There is one magjor
difference, though. While there isasingle instance of an Event Listener that deals will all incoming events,
multipleinstances of a Sagamay exist, each interested in different Events. For example, aSagathat manages
atransaction around an Order with 1d " 1" will not beinterestedin Eventsregarding Order "2", and viceversa.

Using association values

Instead of publishing all Eventsto all Sagainstances (which would be acomplete waste of resources), Axon
will only publish Events containing properties that the Saga has been associated with. This is done using
Associ at i onVal ues. AnAssoci at i onVal ue consists of akey and avalue. The key representsthe
type of identifier used, for example "orderld" or "order". The value represents the corresponding value, "1"
or "2" in the previous example.

The @agaEvent Handl er annotation has two attributes, of which associ ati onProperty isthe
most important one. This is the name of the property on the incoming Event that should be used to find
associated Sagas. Thekey of the association valueisthe name of the property. Thevalueisthevauereturned
by property's getter method.

For example, consider an incoming Event with a method "String getCder 1 d()",
which returns "123". If a method accepting this Event is annotated with
@agaEvent Handl er (associ ati onProperty="orderld"), this Event is routed to all Sagas
that have been associated with an Associ at i onVal ue with key "orderld" and value "123". This may
either be exactly one, more than one, or even none at all.

Axon Framework 1.2 Reference Guide 42

Associating Sagas with Domain Concepts

When a Saga manages a transaction around one or more domain concepts, such as Order, Shipment,
Invoice, etc, that Saga needs to be associated with instances of those concepts. An association requires
two parameters. the key, which identifies the type of association (Order, Shipment, etc) and avalue, which
represents the identifier of that concept.

Associating a Saga with a concept is done in several ways. First of al, when a Saga is newly
created when invoking a @t art Saga annotated Event Handler, it is automatically associated
with the property identified in the @agaEvent Handl er method. Any other association can be
created using the associateWth(String key, hj ect val ue) method. Use the
renoveAssoci ati onWth(String key, Object value) method to remove a specific
association.

Imagine a Sagathat has been created for atransaction around an Order. The Sagaisautomatically associated
with the Order, as the method is annotated with @5t art Saga. The Saga is responsible for creating an
Invoice for that Order, and tell Shipping to create a Shipment for it. Once both the Shipment have arrived
and the Invoice has been paid, the transaction is completed and the Saga is closed.

Here isthe code for such a Saga:

public class O der Managenent Saga extends Abstract Annot at edSaga {

private bool ean paid = fal se
private bool ean delivered = fal se
private transi ent CommandBus conmandBus

@Bt ar t Saga
@agaEvent Handl er (associ ati onProperty = "order|d")
public void handl e(Or der Creat edEvent event) {
/] client generated identifiers O
Shi ppi ngld shipnentld = createShi prent|d();
I nvoi celd invoiceld = createl nvoiceld();
/| associate the Saga with these val ues, before sending the comrmands O
associ ateWth("shi prent1d", shipnentld);
associ ateWth("invoiceld", invoiceld);
/'l send the commands
comandBus. di spat ch(new Pr epar eShi ppi ngCommand(...));
commandBus. di spat ch(new Creat el nvoi ceComrand(...));

}

@agaEvent Handl er (associ ati onProperty = "shi pnent|d")
publ i c voi d handl e(Shi ppi ngArri vedEvent event) {
delivered = true

if (paid) {
end(); O
}
}
@agaEvent Handl er (associ ati onProperty = "invoi cel d")

public void handl e(l nvoi cePai dEvent event) {

Axon Framework 1.2 Reference Guide 43

paid = true;

if (delivered) {
end(); O

}

...

0 By alowing clientsto generate an identifier, a Saga can be easily associated with a concept, without
the need to a request-response type command.

0 We associate the event with these concepts before publishing the command. This way, we are
guaranteed to also catch events generated as part of this command.

00O Thiswill end this saga once the invoice is paid and the shipment has arrived.

Of course, this Saga implementation is far from complete. What should happen if the invoice is not paid
in time. What if the shipment cannot be delivered? The Saga should be able to cope with those scenarios
aswell.

AssociationValue considerations

As said before, an AssociationValue consists of a key, which is a String, and a value, which may be of
any type. However, afew simple rules should be conformed to. The value of an AssociationValue should
always be a Value Object (as defined in Domain Driven Design). In terms of implementation, that means
they should be immutable and have a proper equal s and hashCode method. Preferably, they should
implement the Comparableinterface, too. If Sagas need to be persisted, Associ at i onVal uesneedtobe
serializable. In that case, only use Serializable values. Generdly, it shouldn't be a problem to make Value
Objects Seriaizable.

7.1.3. Keeping track of Deadlines

It is easy to make a Saga take action when something happens. After al, there is an Event to notify the
Saga. But what if you want your Saga to do something when nothing happens? That's what deadlines are
used for. Ininvoices, that's typically several weeks, while the confirmation of a credit card payment should
occur within afew seconds.

In Axon, you can use an Event Schedul er to schedule an Event for publication. In the example
of an Invoice, you'd expect that invoice to be paid within 30 days. A Saga would, after sending
the Cr eat el nvoi ceCommand, schedule an | nvoi cePaynment Deadl i neExpi r edEvent to be
published in 30 days. The EventScheduler returns a Schedul eToken after scheduling an Event. This
token can be used to cancel the schedule, for example when a payment of an Invoice has been received.

Scheduled Events must extend Appl i cati onEvent or Schedul edEvent . The latter is aware of its
own publication time. Axon provides two EventScheduler implementations: a pure Java one and one using
Quartz as a backing scheduling mechanism.

Axon Framework 1.2 Reference Guide 44

Si npl eEvent Schedul er

This pure-Java implementation of the Event Schedul er usesa Schedul edExecut or Servi ce to
schedule Event publication. Although the timing of this scheduler is very reliable, it is a pure in-memory
implementation. Once the JVM is shut down, al schedules are lost. This makes this implementation
unsuitable for long-term schedules.

The Si npl eEvent Schedul er needs to be configured with an EventBus
and a Schedul i ngExecut or Servi ce (see the datic methods on the
java. util.concurrent. Execut ors classfor helper methods).

Quart zEvent Schedul er

The Quart zEvent Schedul er isamore reliable and enterprise-worthy implementation. Using Quartz
as underlying scheduling mechanism, it provides more powerful features, such as persistence, clustering
and misfire management. This means Event publication is guaranteed. It might be alittle late, but it will
be published.

It needsto be configured with a Quartz Schedul er and an Event Bus. Optionally, you may set the name
of the group that Quartz jobs are scheduled in, which defaults to " AxonFramework-Events".

Scheduled Events and Transactions

One or more components will be listening for scheduled Events. These components might rely
on a Transaction being bound to the Thread that invokes them. Scheduled Events are published
by Threads managed by the Event Schedul er. To manage threads, you can configure a
Event Tri gger Cal | back tolistenfor publication of scheduled Events and manage transactions around
them.

> Note

[t |

Spring users can use the QuartzEvent Schedul er FactoryBean or
Si mpl eEvent Schedul er Fact or yBean for easier configuration. It allows you to set the
PlatformTransactionManager directly.

7.1.4. Injecting Resources

Sagas generally do more than just maintaining state based on Events. They interact with external
components. To do so, they need access to the Resources necessary to address to components. Usually,
these resources aren't really part of the Saga's state and shouldn't be persisted as such. But once a Sagais
reconstructed, these resources must be injected before an Event is routed to that instance.

For that purpose, there is the Resour cel nj ector. It is use by the SagaReposi t ory to inject
resourcesinto a Saga. Axon providesaSpr i ngResour cel nj ect or , whichinjectsannotated fieldsand
methods with Resources from the Application Context.

Axon Framework 1.2 Reference Guide 45

) Mark fieldsholding injected resourcest r ansi ent

Since resources should not be persisted with the Saga, make sure to add the t r ansi ent
keyword to those fields. This will prevent the serialization mechanism to attempt to write the
contents of thesefieldsto therepository. Therepository will automatically re-inject therequired
resources after a Saga has been deserialized.

7.2. Saga Infrastructure

Events need to be redirected to the appropriate Saga instances. To do so, some infrastructure classes are
required. The most important components are the SagaManager and the SagaReposi t ory.

7.2.1. SagaManager

The SagaManager is responsible for redirecting Events to the appropriate Saga instances and
managing their life cycle. There are two SagaManager implementations in Axon Framework: the
Annot at edSagaManager , which provides the annotation support and the Si npl eSagaManager ,
which isless powerful, but doesn't force you into using annotations.

Sagas operate in a highly concurrent environment. Multiple Events may reach a Saga at (nearly) the same
time. This means that Sagas need to be thread safe. By default, Axon's SagaManager implementations
will synchronize accessto a Sagainstance. This means that only one thread can access a Saga at atime, and
all changes by onethread are guaranteed to be visible to any successive threads (a.k.a happens-before order
in the Java Memory Maodel). Optionally, you may switch this locking off, if you are sure that your Saga
is completely thread safe on its own. Just set Synchr oni zeSagaAccess(f al se) . When disabling
synchronization, do take note of the fact that this will allow a Sagato be invoked whileit isin the process
of being stored by a repository. The result may be that a Saga is stored in an inconsistent state first, and
overwritten by it's actual state later.

SimpleSagaManager

Thisis by far the least powerful of the two implementations, but it doesn't require the use of annotations.
The Si npl eSagaManager needs to be configured with a number of resources. Its constructor
requires the type of Saga it manages, the SagaReposi t ory, an Associ at i onVal ueResol ver, a
SagaFact ory and the Event Bus. The Associ at i onVal ueResol ver isacomponent that returns
aSet of Associ at i onVal ue for agiven Event.

Then, you should aso configure the types of Events the SagaManager should create new
instances for. This is done through the set Event sToAl waysCreat eNewSagasFor and
set Event sToOpt i onal | yCr eat eNewSagasFor methods. They both accept aList of Saga classes.

AnnotatedSagaManager

This SagaManager implementation uses annotations on the Sagas themselves to manage the routing and
life cycle of that Saga. Asaresult, this manager allows all information about the life cycle of a Sagato be

Axon Framework 1.2 Reference Guide 46

availableinside the Sagaclassitself. It can also manage any number of sagatypes. That meansonly asingle
AnnotatedSagaM anager is required, even if you have multiple types of Saga.

The Annot at edSagaManager is constructed using a SagaRepository, a SagaFactory (optional) and a
vararg array of Saga classes. If no SagaFact ory is provided, a Gener i cSagaFact ory is used. It
assumes that all Saga classes have a public no-arg constructor.

If you use Spring, you can use the axon namespace to configure an AnnotatedSagaManager. The
supported Saga types are provided as a comma separated list. This will also automatically configure a
SpringResourcel njector, which injects any annotated fields with resources from the Spring Application
Context.

<axon: saga- manager id="sagaManager" saga-factory="optional SagaFactory"
saga- reposi tory="sagaReposi tory" event-bus="event Bus">
<axon:types>
fully.qualified. Cl assNanme
anot her. f q. Cl assNanme
</ axon:types>
</ axon: saga- manager >

Asynchronous Event Handling for Sagas

As with Event Listeners, it is also possible to asynchronously handle events for sagas. To handle events
asynchronously, the SagaManager needs to be configured with an Execut or implementation. The
Execut or supplies the threads needed to process the events asynchronously. Often, you'll want to use a
thread pool. Y ou may, if you want, share this thread pool with other asynchronous activities.

When an executor is provided, the SagaManager will automatically use it to find associated Saga instances
and dispatch the events each of theseinstances. The SagaM anager will guaranteethat for each Sagainstance,
all events are processed in the order they arrive. For optimization purposes, this guarantee does not count
in between Sagas.

Because Transactions are often Thread bound, you may need to configure a Transaction Manager with the
SagaManager. This transaction manager isinvoked before and after each invocation to the Saga Repository
and before and after each batch of Events has been processed by the Saga itself. The Transaction Manager
has the opportunity to configure the batch size each time a transaction starts. The batch size describes
the number of Events that a Saga may process before the transaction is committed. This mechanism can
be compared to the mechanism for Event Listeners, desribed in Section 6.2.3, “Managing transactions in
asynchronous event handling”.

In a Spring application context, a Saga Manager can be marked as asynchronous by adding the execut or
and optionally thet r ansact i on- manager attributestothesaga- manager element, asshown below.

<axon: saga- manager id="sagaManager" saga-factory="optional SagaFactory"
saga- reposi tory="sagaReposi tory" event-bus="event Bus"
execut or ="nyThr eadPool " transacti on- manager ="t xManager ">
<axon:types>
fully.qualified.d assNang,

Axon Framework 1.2 Reference Guide 47

anot her. f q. Cl assNanme
</ axon: types>
</ axon: saga- manager >
The transaction-manager should point to a Pl at f or mlr ansact i onManager , Spring's interface for
transaction managers. Generally you can use the same transaction manager as the other componentsin your
application (e.g. JpaTr ansact i onManager).

7.2.2. SagaReposi tory

The SagaReposi t ory isresponsible for storing and retrieving Sagas, for use by the SagaManager . It
is capable of retrieving specific Sagainstances by their identifier aswell as by their Association Values.

There are some special requirements, however. Since concurrency in Sagasisavery delicate procedure, the
repository must ensure that for each conceptual Sagainstance (with equal identifier) only a single instance
existsin the VM.

Axon provides two SagaReposi t ory implementations: the | nMenor ySagaReposi t ory and the
JpaSagaReposi tory.

| nMenor ySagaRepository

Asthe name suggests, thisrepository keeps a collection of Sagasin memory. Thisisthe simplest repository
to configure and the fastest to use. However, it doesn't provide any persistence. If the VM is shut down,
any stored Sagais lost. This implementation is particularly suitable for testing and some very specialized
use cases.

JpaSagaReposi tory

The JpaSagaReposi t ory uses JPA to store the state and Association Vaues of Sagas. Sagds do
no need any JPA annotations, Axon will serialize the sagas using a SagaSeri al i zer (comparable to
Event serialization, you can use either aJavaSagaSeri al i zer oran XSt r eanfSagaSeri al i zer).
Although Sagas are persisted and may be garbage collected when not used, the Association Vaues are kept
in memory. The memory footprint of these values is generally quite small and should no be a problem.
These values are reconstructed after aJVM restart, without |oss of data

In order to ensure that only asingle instance exists for each conceptual Saga, the JpaSagaRepository uses a
specialized cache. Unlike many other caches, the primary goal of this cacheisto prevent multiple instances
of asingle Saga. These Sagas are Weakly Referenced. That means that once a Sagaisno longer referenced,
the Garbage Collector may clean them up. When the Sagais needed, anew instanceisautomatically created.

The JpaSagaRepository is configured with a JPA Enti t yManager, a Resour cel nj ector and a
SagaSeri al i zer . Optionaly, you can choose whether to explicitly flush the Ent i t yManager after
each operation. This will ensure that data is sent to the database, even before a transaction is committed.
the default isto use explicit flushes.

Axon Framework 1.2 Reference Guide 48

8. Testing

One of the biggest benefits of CQRS, and especially that of event sourcing is that it is possible to express
tests purely in terms of Events and Commands. Both being functional components, Events and Commands
have clear meaning to the domain expert or business owner. This means that tests expressed in terms of
Events and Commands don't only have a functional meaning, it also means that they hardly depend on any
implementation choices.

The features described in this chapter require the axon-t est module, which can be obtained by
configuration a maven dependency (use <arti f act | d>axon-text</artifactl d>) or from the
full package download.

8.1. Command Component Testing

The command handling component istypically the component in any CQRS based architecture that contains
the most complexity. Being more complex than the others, this also means that there are extra test related
requirements for this component. Simply put: the more complex a component, the better it must be tested.

Although being more complex, the API of a command handling component is fairly easy. It has command
coming in, and events going out. |n some cases, there might be aquery as part of command execution. Other
than that, commands and events are the only part of the API. This means that it is possible to completely
define atest scenario in terms of events and commands. Typically, in the shape of:

 given certain eventsin the past,
» when executing this command,
* expect these events to be published and/or stored.

Axon Framework providesatest fixturethat allowsyou to do exactly that. This GivenWhenThenTestFixture
alows you to configure a certain infrastructure, composed of the necessary command handler and
repository, and express you scenario in terms of given-when-then events and commands.

The following example shows the usage of the given-when-then test fixture with JUnit 4:

public class MyCommandConponent Test {
private FixtureConfiguration fixture;

@efore
public void setUp() {
fixture = Fi xtures. newG venWienThenFi xture(); O
My ConmandHandl er nyCommrandHandl er = new MyConmandHandl er (
fixture.createGenericRepository(M/Aggregate.class)); O
fixture.registerAnnot at edConmandHand! er (nyCommandHandl er); O

Axon Framework 1.2 Reference Guide 49

@est
public void testFirstFixture() {
fixture.given(new MyEvent (1)) O
. when(new Test Commrand())
. expect Voi dRet ur nType()
. expect Event s(new MyEvent (2));

0 This line creates a fixture instance that can deal with given-when-then style tests. It is created
in configuration stage, which alows us to configure the components that we need to process the
command, such ascommand handler and repository. An event bus and command bus are automatically
created as part of the fixture.

O The creat eGeneri cRepository method creates, as expected, a
Generi cEvent Sour ci ngReposi t ory instance capable of storing MyAggr egat e instances.
This requires some conventions on the MyAggregate class, as described in Section 5.2, “Event
Sourcing repositories”.

0 The register Annot at edCommandHandl er method will register any bean as being an
@omuandHandl er with the command bus. All supported command types are automatically
registered with the event bus.

00 These four lines define the actual scenario and its expected result. The first line defines the events
that happened in the past. These events define the state of the aggregate under test. In practical terms,
these are the events that the event store returns when an aggregate is loaded. The second line defines
the command that we wish to execute against our system. Finally, we have two more methods that
define expected behavior. In the example, we use the recommended void return type. The last method
defines that we expect a single event as result of the command execution.

The given-when-then test fixture defines three stages: configuration, execution and validation. Each
of these stages is represented by a different interface: Fi xt ur eConf i gur ati on, Test Execut or
and Resul t Val i dat or, respectively. The static newG venWhenThenFi xt ur e() method on the
Fi xt ur es class provides a reference to the first of these, which in turn may provide the validator, and
so forth.

@ Note

To make optimal use of the migration between these stages, it is best to use the fluent interface
provided by these methods, as shown in the exampl e above.

Configuration

During the configuration phase, you provide the building blocks required to execute the test. Specialized
versions of the event bus, command bus and event store are provided as part of the fixture. There
are getters in place to obtain references to them. The repository and command handlers need to be
provided. This can be done using ther egi st er Reposi t ory andr egi st er CommandHandl er (or
regi st er Annot at edConmmandHandl er) methods. If your aggregate allows the use of a generic

Axon Framework 1.2 Reference Guide 50

repository, you can use the cr eat eGener i cReposi t ory method to create a generic repository and
register it with the fixture in asingle call. The example above uses this feature.

If the command handler and repository are configured, you can definethe"given" events. These eventsneed
to be subclasses of Domai nEvent , asthey represent events coming from the event store. Y ou do not need
to set aggregate identifiers of sequence numbers. The fixture will inject those for you (using the aggregate
identifier exposed by get Aggr egat el denti fi er and a sequence number starting with O.

Execution

The execution phase allows you to provide a command to be executed against the command handling
component. That's al. Note that successful execution of this command requires that a command handler
that can handle this type of command has been configured with the test fixture.

Validation

The last phase is the validation phase, and allows you to check on the activities of the command handling
component. Thisis done purely in terms of return values and events (both stored and dispatched).

The test fixture allows you to validate return values of your command handlers. Y ou can explicitly define
an expected void return value or any arbitrary value. Y ou may also express the expectancy of an exception.

The other component is validation of stored and dispatched events. In most cases, the stored and dispatched
areegual. In some cases however, you may dispatch events(e.g. Appl i cat i onEvent) that are not stored
inthe event store. In thefirst case, you can usetheexpect Event s method to validate events. In the latter
case, you may usethe expect Publ i shedEvent s and expect St or edEvent s methods to validate
published and stored events, respectively.

There are two ways of matching expected events.

Thefirstisto passin Event instances that need to be literally compared with the actual events. All properties
of the expected Events are compared (using equal s()) with their counterpartsin the actual Events. If one
of the propertiesis not equal, the test fails and an extensive error report is generated.

The other way of expressing expectanciesis using Matchers (provided by the Hamcrest library). Mat cher

isan interface prescribing two methods: mat ches(Cbj ect) anddescri beTo(Descri ption).The
first returns a boolean to indicate whether the matcher matches or not. The second allows you to express
your expectation. For example, a "GreaterThanTwoMatcher" could append "any event with value greater
than two" to the description. Descriptions alow expressive error messages to be created about why a test
casefails.

Creating matchersfor alist of events can betediousand error-pronework. To simplify things, Axon provides
a set of matchersthat allow you to provide a set of event specific matchers and tell Axon how they should
match against the list.

Below is an overview of the available Event List matchers and their purpose:

Axon Framework 1.2 Reference Guide 51

o Listwithall of: Matchers.listWthAl | O (event matchers...)

This matcher will succeed if al of the provided Event Matchers match against at least one event in the
list of actual events. It does not matter whether multiple matchers match against the same event, nor if
an event in the list does not match against any of the matchers.

* List with any of: Mat chers. i st WthAnyOf (event matchers...)

This matcher will succeed if one of more of the provided Event Matchers matches against one or more of
the events in the actual list of events. Some matchers may not even match at all, while another matches
against multiple others.

* Sequenceof Events: Mat cher s. sequenceC (event matchers...)

Use this matcher to verify that the actual Events are match in the same order as the provided Event
Matchers. It will succeed if each Matcher matches against an Event that comes after the Event that the
previous matcher matched against. This means that "gaps" with unmatched events may appear.

If, after evaluating the events, more matchers are available, they are all matched against "nul | ". Itisup
to the Event Matchers to decide whether they accept that or not.

» Exact sequence of Events: Mat cher s. exact SequenceOf (event natchers...)

Variation of the "Sequence of Events' matcher where gaps of unmatched events are not allowed. This
means each matcher must match against the Event directly following the Event the previous matcher
matched against.

For convenience, afew commonly required Event Matchersare provided. They match against asingle Event
instance:

» Equal Event: Mat cher s. equal To(event instance...)

Verifies that the given event is semantically equal to the actual event. This matcher will compare all
values in the fields of both actual and expected Events using a null-safe equals method. The aggregate
identifier and sequence number are ignored, as they are often not set on the "expected” Event.

* NoMoreEvents. Mat cher s. andNoMor e() or Mat cher s. not hi ng()

Only matches against anul | value. This matcher can be added as last matcher to the Exact Sequence
of Events matchers to ensure that no unmatched events remain.

Below is a small code sample displaying the usage of these matchers. In this example, we expect
two events to be stored and published. The first event must be "aThirdEvent", and the second
"aFourthEventWithSomeSpecial Things'. There may be no third event, as that will fal against the
"andNoMore" matcher.

fixture.given(new FirstEvent (), new SecondEvent())

Axon Framework 1.2 Reference Guide 52

. when(new DoSonet hi ngCommand(fi xt ure. get Aggregateldentifier()))
. expect Event s(exact SequenceCf (

aThi rdEvent (),

aFourt hEvent W t hSomeSpeci al Thi ngs(),

andNoMor e()
)

8.2. Testing Annotated Sagas

Similar to Command Handling components, Sagas have a clearly defined interface: they only respond to
Events. On the other hand, Saga's have a notion of time and may interact with other components as part of
their event handling process. Axon Framework's test support modul e contains fixtures that help you writing
tests for sagas.

Each test fixture contains three phases, similar to those of the Command Handling component fixture
described in the previous section.

* given certain events (from certain aggregates),
» when an event arrives or time elapses,
* expect certain behavior or state.

Both the "given" and the "when" phases accept events as part of their interaction. During the "given" phase,
all side effects, such as generated commands are ignored, when possible. During the "when" phase, on the
other hand, events and commands generated from the Saga are recorded and can be verified.

The following code sample shows an example of how the fixtures can be used to test a saga that sends a
notification if an invoiceisn't paid within 30 days:

Annot at edSagaTest Fi xture fi xture = new Annot at edSagaTest Fi xt ure(| nvoi ci ngSaga. cl ass); 0O
fixture. gi venAggr egat e(i nvoi cel d). publ i shed(new | nvoi ceCreat edEvent ()) O

. whenTi neEl apses(Durati on. standar dDays(31)) O

. expect Di spat chedConmandsMat chi ng(Mat chers. i st WthAl | O (aMar kAsOver dueComrand())); O

Creates a fixture to test the InvoiceSaga class
Notifies the saga that a specific aggregate (with id "invoiceld") has generated an event
Tells the saga that time el apses, triggering events scheduled in that time frame

I R I B

Verifies that the saga has sent a command matching the return value of
aMar kAsOver dueConmmand() (aHamcrest matcher)

Injecting Resources

Often, Sagas will interact with external resources. These resources aren't part of the Sagds state,
but are injected after a Saga is loaded or created. The test fixtures alows you to register
resources that need to be injected in the Saga To register a resource, simply invoke the

Axon Framework 1.2 Reference Guide 53

fixture. regi sterResource(Ohj ect) method with the resource as parameter. The fixture will
detect appropriate setter methods on the Saga and invoke it with an available resource.
¢} Injecting mock objects asresour ces

]

It can bevery useful toinject mock objects (e.g. Mockito or Easymock) into your Saga. It allows
you to verify that the saga interacts correctly with your external resources.

Time as a parameter in your tests

The test fixture tries to eliminate elapsing system time where possible. This means that it will appear that
no time elapses while the test executes, unless you explicitly state so using whenTi neEl apses() . All
events will have the timestamp of the moment the test fixture was created.

Having the time stopped during the test makes it easier to predict at what time events are scheduled for
publication. If your test case verifiesthat an event is scheduled for publication in 30 seconds, it will remain
30 seconds, regardless of the time taken between actual scheduling and test execution.

@ Note
Time is stopped using Joda Time's JodaTi meUtils class. This means that the
concept of stopped time is only visble when using Joda time's classes. The
System current TimeM | | i s() will keep returning the actual date and time. Axon only
uses Joda Time classes for Date and Time operations.

You can aso use the St ubEvent Schedul er independently of the test fixtures if you need to test
scheduling of events. This Event Schedul er implementation allows you to verify which events are
scheduled for whch time and gives you options to manipulate the progress of time. Y ou can either advance
time with a specific Dur at i on, move the clock to a specific Dat eTi ne or advance time to the next
scheduled event. All these opertaions will return the events scheduled within the progressed interval.

Axon Framework 1.2 Reference Guide 54

9. Using Spring

The AxonFramework has many integration points with the Spring Framework. All major building blocksin
Axon are Spring configurable. Furthermore, there are some Bean Post Processors that scan the application
context for building blocks and automatically wires them.

In addition, the Axon Framework makes use of Spring's Extensible Schema-based configuration feature
to make Axon application configuration even easier. Axon Framework has a Spring context configuration
namespace of its own that allows you to create common configurations using Spring's XML configuration
syntax, but in amore functionally expressive way than by wiring together explicit bean declarations.

9.1. Adding support for the Java Platform Common
Annotations

Axon uses JSR 250 annotations (@Post Const r uct and @r eDest r oy) to annotate lifecycle methods
of some of the building blocks. Spring doesn't always automatically evaluate these annotations. To force
Spring to do so, addthe<cont ext : annot at i on- conf i g/ > tagto your application context, as shown
in the example below:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: context="http://ww. springframework. or g/ schema/ cont ext ">

<cont ext : annot ati on-confi g/ >

</ beans>

9.2. Using the Axon namespace shortcut

As mentioned earlier, the Axon Framework provides a separate namespace full of elements that allow you
to configure your Axon applications quickly when using Spring. In order to use this namespace you must
first add the declaration for this namespace to your Spring XML configuration files.

Assume you already have an XML configuration file like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"

xsi : schemaLocat i on="ht t p: // www. spri ngf ramewor k. or g/ schenma/ beans http://
www. spri ngf ranewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

</ beans>

To modify this configuration file to use elements from the Axon namespace, just add the following
declarations:

Axon Framework 1.2 Reference Guide 55

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: axon="htt p: // ww. axonf r amewor k. or g/ schema/ cor e" O

Xsi : schemaLocati on="htt p: //wwv. spri ngfranmewor k. or g/ schema/ beans http://
www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd

htt p: // ww. axonf ranewor k. or g/ schema/ core http://ww. axonf ranmewor k. or g/ schema/ axon- cor e. xsd" >

0 Thedeclaration of the axon namespace reference that you will use through the configuration file.
0 Mapsthe Axon namespace to the XSD where the namespace is defined.

9.3. Wiring event and command handlers

9.3.1. Event handlers

Using the annotated event listeners is very easy when you use Spring. All you need to do is configure
the Annot at i onEvent Li st ener BeanPost Processor in your application context. This post
processor will discover beanswith @vent Handl er annotated methods and automatically connect them
to the event bus.

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans" >
<bean cl ass="org. .. Annot ati onEvent Li st ener BeanPost Processor"> [
<property nanme="eventBus" ref="eventBus"/> [
</ bean>

<bean cl ass="org. axonframewor k. sanpl e. app. query. Addr essTabl eUpdater"/> O

</ beans>

[0 This bean post processor will scan the application context for beans with an @vent Handl er
annotated method.

O Thereferenceto the event busis optional, if only asingle Event Bus implementation is configured
in the application context. The bean postprocessor will automatically find and wireit. If thereis more
than one Event Bus in the context, you must specify the one to use in the postprocessor.

0 Thisevent listener will be automatically recognized and subscribed to the event bus.

You can also wire event listeners "manualy”, by explicitly defining them within a
Annot at i onEvent Li st ener Adapt er bean, as shown in the code sample below.

<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans" >

<bean cl ass="org. axonframework. .. annot ati on. Annot ati onEvent Li st ener Adapter"> 0O

<constructor-arg>
<bean cl ass="or g. axonframewor k. sanpl e. app. query. Addr essTabl eUpdat er"/ >

</ constructor-arg>
<property name="eventBus" ref="eventBus"/> [0
</ bean>

Axon Framework 1.2 Reference Guide 56

</ beans>

0 Theadapter turns any bean with @vent Handl er methodsinto an Event Li st ener
0 You need to explicitly reference the event bus to which you like to register the event listener

+ Warning

Be careful when wiring event listeners "manualy" while there is aso an
Annot at i onEvent Li st ener BeanPost Processor in the application context. This
will cause the event listener to be wired twice.

9.3.2. Command handlers

Wiring command handlers is very much like wiring event handlers. there is an
Annot at i onConmandHandl er BeanPost Processor which will automatically register classes
containing command handler methods (i.e. methods annotated with the @ComrandHand| er annotation)
with acommand bus.

<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans" >
<bean cl ass="org. .. Annot ati onCommandHand| er BeanPost Processor"> [
<property nanme="comrandBus" ref="conmandBus"/> O

</ bean>

<bean cl ass="org. axonfranmewor k. sanpl e. app. conmand. Cont act CommandHandl er"/> 0O

</ beans>

0 This bean post processor will scan the application context for beans with a @ComrandHandl| er
annotated method.

O The reference to the command bus is optional, if only a single CommandBus implementation is
configured in the application context. The bean postprocessor will automatically find and wire it.
If there is more than one ConmrandBus in the context, you must specify the one to use in the
postprocessor.

0 Thiscommand handler will be automatically recognized and subscribed to the command bus.

Aswith event listeners, you can also wire command handlers"manually" by explicitly defining them within
aAnnot at i onCommandHand| er Adapt er bean, as shown in the code sample below.

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans" >

<bean cl ass="org. axonframework. .. annot ati on. Annot at i onConmandHand| er Adapter"> O
<constructor-arg>
<bean cl ass="or g. axonframewor k. sanpl e. app. command. Cont act CommandHandl| er"/ >
</ constructor-arg>
<property name="comrandBus" ref="conmandBus"/> O
</ bean>

Axon Framework 1.2 Reference Guide 57

</ beans>

0 Theadapter turns any bean with @vent Handl er methodsinto an Event Li st ener
O You need to explicitly reference the event bus to which you like to register the event listener

/Ay Warning

Be careful when wiring command handlers "manually" while there is aso an
Annot at i onConmandHandl er BeanPost Pr ocessor in the application context. This
will cause the command handler to be wired twice.

9.3.3. Annotation support using the axon namespace

The previous two sections explained how you wire bean post processors to activate annotation support for
your command handlers and event listeners. Using support from the Axon namespace you can accomplish
the same in one go, using the annotation-config element:

<axon: annot ati on-config />

The annotation-config element has the following attributes that allow you to configure annotation support
further:

Table 9.1. Attributes for annotation-config

Attribute name Usage Expected value type Description
commandBus Conditional Referenceto a Needed only if the
CommandBus Bean application context

contains more than one
command bus.

eventBus Conditional Reference to an Needed only if the
EventBus Bean application context
contains more than one
event bus.
executor Optional Referenceto a An executor to be used
java.util.concurrent.Executerth asynchronous
instance bean event listeners

9.4. Wiring the event bus

In atypical Axon application there is only one event bus. Wiring it is just a matter of creating a bean of a
subtype of Event Bus. The Si npl eEvent Bus isthe provided implementation.

<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans" >

Axon Framework 1.2 Reference Guide 58

<bean i d="eventBus" cl ass="org. axonframewor k. event handl i ng. Si npl eEvent Bus"/ >

</ beans>

Setting up an event bus can also be accomplished using support from the axon namespace:

<axon: event - bus i d="event Bus"/>

9.5. Wiring the command bus

The basics

The command bus doesn't take any configuration to use. However, it allows you to configure a number of
interceptors that should take action based on each incoming command.

<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans" >

<bean i d="eventBus" cl ass="org. axonfranmewor k. commandhandl| i ng. CommandBus" >
<property name="interceptors">
<list>
<bean cl ass="org. axonfranmework. .. Spri ngTransacti onal | nt erceptor">
<property nanme="transacti onManager" ref="transacti onManager"/>

</ bean>
<bean cl ass="ot her-interceptors"/>
</list>
</ property>
</ bean>
</ beans>

Using the Axon namespace

Setting up abasic command bus using the Axon namspace isa piece of cake: you can usethecommandBus
element:

<axon: conmand- bus i d="conmmandBus"/ >

Configuring command interceptors for your command bus is also possible using the <axon: command-
bus> e ement, like so:

<axon: command- bus i d="commandBus" >
<axon: i nterceptors>
<ref>i nterceptor-zero</ref>
<ref >i nt ercept or - one</ref >
<ref >i nterceptor-two</ref>
</ axon:i nterceptors>
</ axon: command- bus>

Of course you are not limited to bean references; you can also include local bean definitions if you want.

Axon Framework 1.2 Reference Guide 59

9.6. Wiring the Repository

Wiring a repository is very similar to any other bean you would use in a Spring application. Axon only
provides abstract implementations for repositories, which means you need to extend one of them. See
Chapter 5, Repositories and Event Stores for the available implementations.

Repository implementations that do support event sourcing just need the event busto be configured, aswell
as any dependencies that your own implementation has.

<bean i d="si npl eReposi tory" class="ny. package. Si npl eReposi tory">
<property nanme="eventBus" ref="eventBus"/>
</ bean>

Repositoriesthat support event sourcing will also need an event store, which takes care of the actual storage
and retrieval of events. The example below shows a repository configuration of arepository that extends
the Event Sour ci ngReposi tory.

<bean i d="cont act Repository" class="org. axonfranmewor k. sanpl e. app. conmand. Cont act Reposi t ory" >
<property name="event Bus" ref="eventBus"/>
<property nanme="event Store" ref="eventStore"/>

</ bean>

In many cases, you can usethe Gener i cEvent Sour ci ngReposi t or y. Below isan example of XML
application context configuration to wire such arepository.

<bean i d="nyRepository" class="org.axonfranmework. event sour ci ng. Generi cEvent Sour ci ngReposi tory">
<constructor-arg value="fully.qualified.class. Nane"/>
<property nanme="eventBus" ref="eventBus"/>
<property name="event Store" ref="eventStore"/>

</ bean>

<l-- or, when using the axon nanmespace -->
<axon: event - sour ci ng-reposi tory i d="nyRepository"

aggregate-type="fully.qualified.class. Name"
event - bus="event Bus" event-store="event Store"/>

The repository will delegate the storage of events to the configured event St or e, while these events are
dispatched using the provided event Bus.

9.7. Wiring the Event Store

All event sourcing repositorties need an event store. Wiring the JpaEvent Store and the
Fi | eSyst enEvent St or e isvery similar, but the JpaEvent St or e needsto run in a Spring managed
transaction. Unless you use the Spri ngTr ansact i onal | nt er cept or on your command bus, you
need to declare the annotation-driven transaction-manager as shown in the sample below.

<bean id="event Store" cl ass="org. axonframework. eventstore.]jpa.JpaEvent Store"/>

Axon Framework 1.2 Reference Guide 60

<I-- enable the configuration of transactional behavior based on annotations -->
<t x:annotation-driven transaction-nmanager="t xManager"/>

<I-- declare transaction manager, data source, EntityMnagerFactoryBean, etc -->
Using the Axon namespace support, you can quickly configure event stores backed either by thefile system

or aJPA layer using the one of the following elements:

<axon:j pa-event-store id="]j paEvent Store"/>

<axon: fil esystemevent-store id="fil eSystenEvent Store" baseDir="/data"/>

9.8. Configuring Snapshotting

Configuring snapshotting using Spring is hot complex, but does require a number of beansto be configured
in your application context.

The Event Count Snapshott er Tri gger needsto be configured asa proxy for your event store. That
means all repositories should load and save aggregate from the Event Count Snapshot t er Tri gger,
instead of the acutal event store.

<bean i d="nyRepository" class="org.axonfranmework. .. Generi cEvent Sour ci ngReposi tory">
<I-- properties omtted for brevity -->
<property nanme="snapshotterTrigger">
<bean cl ass="or g. axonfranmewor k. event sour ci ng. Event Count Snapshotter Tri gger ">
<property name="trigger" val ue="20" />

</ bean>
</ property>
</ bean>
<l-- or, when using the nanespace -->
<axon: event -sourci ng-repository> <l -- attributes omtted for brevity -->

<axon: snapshotter-trigger id="snapshotterTrigger" event-count-threshol d="20" snapshotter-
ref="snapshotter"/>
</ axon: event - sour ci ng-reposi tory>

The sample above configures an EventCountSnapshotter trigger that will trigger Snapshot creation when
20 or more events are required to reload the aggregate's current state.

The snapshotter is configured as follows:

<bean i d="snapshotter" class="org.axonfranmework. event sourci ng. Spri ngAggr egat eSnapshotter">
<property name="event Store" ref="eventStore"/>
<property name="executor" ref="taskExecutor"/>

</ bean>

<l-- or, when using the nanmespace -->

<axon: snapshotter id="snapshotter" event-store="eventStore" executor="taskExecutor"/>

Axon Framework 1.2 Reference Guide 61

<I-- the task executor attribute is optional. Wen used you can define (for exanple) a thread
pool to performthe snapshotting -->
<bean i d="t askExecutor" class="org. springframework. schedul i ng. concurrent. Thr eadPool TaskExecut or ">
<property nanme="corePool Si ze" val ue="2"/>
<property nanme="wai t For TasksToConpl et eOnShut down" val ue="true"/>
</ bean>

The Spri ngAggr egat eSnapshot t er will automatically detect any
Pl at f or nilr ansact i onManager in your application context, as well as Aggr egat eFact ory
instances, which all repositories typically are. That means you only need very little configuration to use a
Snapshot t er within Spring. If you have multiple Pl at f or nilr ansact i onManager beansin your
context, you should explicitly configure the one to use.

9.9. Configuring Sagas

To use Sagas, two infrastructure components are required: the SagaM anager and the SagaRepository. Each
have their own element in the Spring application context.

The SagaManager is defined as follows:

<axon: saga- manager i d="sagaManager" saga-repository="sagaRepository"
saga- fact ory="sagaFact ory" executor="t askExecutor"
transacti on- manager ="transacti onManager"
resource-injector="resourcel njector">
<axon:types>
fully.qualified. dassNang,
anot her. Cl assNane
</ axon: types>
</ axon: saga- manager >

All properties, except for the i d are optional. The saga- r eposi t ory will default to an in-memory
repository, meaning that Sagas will be lost when the VM is shut down. The saga-factory can
be provided if the Saga instances do not have a no-argument accessible constructor, or when special
initialization is required. An execut or can be provided if Sagas should not be invoked by the event
dispatching thread. When using asynchronous event handling, or event scheduling within the Sagals, it is
required to providethet r ansact i on- manager attribute. The default resource injector uses the Spring
Context to autowire Saga instances with Spring Beans.

Usethet ypes element to provide a comma-separated list of fully qualified class names of the annotated
sagas.

When an in-memory Saga repository does not suffice, you can easily configure one that uses JPA as
persistence mechanism as follows:

<axon: j pa- saga-repository i d="sagaRepository" resource-injector="resourcelnjector"
use-explicit-flush="true" saga-serializer="sagaSerializer"/>

Axon Framework 1.2 Reference Guide 62

The resource-injector, as with the saga manager, is optional and defaults to Spring-based autowiring. The
saga-serializer defines how Sagainstances need to be serialized when persisted. Thisdefaultsto an X Stream
based serialization mechanism. You may choose to explicitly flush any changes made in the repository
immediately or postponeit until the transaction in which the changes were made are executed by setting the
use-explicit-flush attributetot rue orf al se, respectively. This property defaultstot r ue.

Axon Framework 1.2 Reference Guide 63

10. Performance Tuning

This chapter contains a checklist and some guidelines to take into consideration when getting ready for
production-level performance. By now, you have probably used the test fixtures to test your command
handling logic and sagas. The production environment isn't as forgiving as a test environment, though.
Aggregates tend to live longer, be used more frequently and concurrently. For the extra performance and
stability, you're better off tweaking the configuration to suit your specific needs.

10.1. Database Indexes

If you have generated the tables automatically using your JPA implementation (e.g. Hibernate), you
probably do not have al the right indexes set on your tables. Different usages of the Event Store require
different indexes to be set for optimal performance. Thislist explainswhich fields are used for the different
types of queries by the default Event Ent r y St or e implementation:

» Normal operational use (storing and loading events):

Table 'DomainEventEntry', columns type, aggregatel dentifier and sequenceNunber
(unique index)

* Snapshotting:

Table 'SnapshotEventEntry', columns t ype, aggr egat el denti fi er and sequenceNunber
(optionally a unique index)

* Replaying the Event Store contents

Table 'DomainEventEntry’, columnt i nest anp (optionally also sequenceNunber)
* Sagas

Table 'AssociationVaueEntry', columnsassoci at i onKey and sagal d,

Table 'SagaEntry’, column sagal d (unique index)

10.2. Caching

A well designed command handling module should pose no problems when implementing caching.
Especially when using Event Sourcing, |oading an aggregate from an Event Store is an expensive operation.
With a properly configured cache in place, loading an aggregate can be converted into a pure in-memory
process.

Here are afew guidelines that help you get the most out of your caching solution:

» Make surethe Unit Of Work never needs to perform arollback for functional reasons.

Axon Framework 1.2 Reference Guide 64

A rollback means that an aggregate has reached an invalid state, and will invalidate the cache. The next
requrest will force the aggregate to be reconstructed from its Events. If you use exceptions as a potential
(functional) return value, you can configure a Rol | backConf i gur ati on on your Command Bus.
By default, the Unit Of Work will be rolled back on every exception.

» All commands for a single aggregate must arrive on the machine that has the aggregate in its cache.

Thismeansthat commands should be consistently routed to the same machine, for aslong asthat machine
is "healthy". Routing commands consistently prevents the cache from going stale. A hit on a stale cache
will cause acommand to be executed and fail at the moment events are stored in the event store.

» Configure asensibletimeto live/timetoidle

By default, caches have a tendency to have a relatively short time to live, a matter of minutes. For a
command handling component with consistent routing, an eternal time-to-idle and time-to-live is the
better default. This prevents the need to re-initialize an aggregate based on its events, just because its
cache entry expired. Thetime-to-live of your cache should match the expected lifetime of your aggregate.

10.3. Snapshotting

Snapshotting removes the need to reload and replay large numbers of events. A single snapshot represents
the entire aggregate state at a certain moment in time. The process of snapshotting itself, however, aso
takes processing time. Therefor, there should be a balance in the time spent building snapshots and the time
it saves by preventing a number of events being read back in.

There is no default behavior for all types of applications. Some will specify a number of events after which
a snapshot will be created, while other applications require a time-based snapshotting interval. Whatever
way you choose for your application, make sure snapshotting isin place if you have long-living aggregates.

See Section 5.4, “ Snapshotting” for more about snapshotting.

10.4. Aggregate performance

The actua structure of your aggregates has alarge impact of the performance of command handling. Since
Axon manages the concurrency around your aggregate instances, you don't need to use special locks or
concurrent collections inside the aggregates.

Override get Chi | dEnti ti es

By default, the getChildEntities method in AbstractEventSourcedAggregateRoot and
AbstractEventSourcedEntity uses reflection to inspect all the fields of each entity to find related entities.
Especially when an aggregate contains large collections, this inspection could take more time than desired.

Axon Framework 1.2 Reference Guide 65

To gain a performance benefit, you can override the get Chi | dEnti ti es method and return the
collection of child entities yourself. If an entity is a leaf node (i.e. has no child entities), you may either
return an empty collection or nul | .

10.5. Event Serializer tuning

XStream isvery configurable and extensible. If you just useaplain XSt r eanEvent Seri al i zer , there
are some quick winsready to pick up. X Stream allows you to configure aliases for package names and event
class names. Aliases are typically much shorter (especialy if you have long package names), making the
serialized form of an event smaller. An since we're talking XML, character removed from XML is twice
the profit (one for the start tag, and one for the end tag).

A more advanced topic in XStream is creating custom converters. The default reflection based converters
are simple, but do not generate the most compact XML. Always look carefully at the generated XML and
seeif all theinformation there is really needed to reconstruct the original instance.

Avoid the use of upcasters when possible. X Stream allows aliases to be used for fields, when they have
changed name. Imagine revision O of an event, that used a field called "clientld". The business prefers
the term "customer”, so revision 1 was created with a field called "customerld”. This can be configured
completely in XStream, using field aliases. Y ou need to configure two aliases, in the following order: alias
"customerld" to "clientld" and then alias "customerld" to "customerld”. This will tell XStream that if it
encountersafield called "customerld", it will call the corresponding XML element " customerld"” (the second
aliasoverridesthefirst). But if XStream encountersan XML element called "clientld”, itisaknown aliasand
will be resolved to field name "customerld". Check out the X Stream documentation for more information.

For ultimate performance, you're probably better off without reflection based mechanisms alltogether. In
that case, it is probably wisest to create a customer serialization mechanism. The Dat al nput St r eam
and Dat aCut put St ream alow you to easilly write the contents of the Events to an output
stream. The Byt eArrayQut put Stream and Byt eArrayl nput St ream alow writing to and
reading from byte arrays. The Domai nEvent class provides a constructor that you can use to
do a full reconstruction based on existing dataz Donmai nEvent (String eventldentifier,

Dat eTi ne creationTi neStanp, |ong eventRevision, |ong sequenceNunber,

Aggregat el dentifier aggregateldentifier).

10.6. Custom ldentifier generation

The Axon Framework usesan | dent i fi er Fact or y to generate al theidentifiers, whether they are for
Eventsor Aggregates. Thedefault| dent i fi er Fact or y usesrandomly generatedj ava. util . UUl D
based identifiers. Although they are very safe to use, the process to generate them doesn't excell in
performance.

IdentifierFactory is an abstract factory that uses Javas ServiceLoader (since Java 6) mechanism
to find the implementation to use. This means you can create your own implementation of the

Axon Framework 1.2 Reference Guide 66

factory and put the name of the implementation in a file called "/ META-| NF/ servi ces/
or g. axonf ramewor k. domai n. I denti fi er Fact ory". Javas ServiceLoader mechanism will
detect that file and attempt to create an instance of the class named inside.

There are afew requirementsfor thel dent i fi er Fact or y. The implementation must

have its fully qualified class name as the contents of the /META-INF/ services/
or g. axonf ramewor k. domai n. I denti f i er Fact ory file on the classpath,

have an accessible zero-argument constructor,
extend | denti fi er Factory,

be accessible by the context classloader of the application or by the classloader that loaded the
I denti fi er Fact ory class, and must

be thread-safe.

Axon Framework 1.2 Reference Guide 67

	Reference Guide
	Table of Contents
	1. Introduction
	1.1. Axon Framework Background
	1.1.1. A brief history
	1.1.2. What is Axon?
	1.1.3. When to use Axon?

	1.2. Getting started
	1.2.1. Download Axon
	1.2.2. Configure Maven
	1.2.3. Infrastructure requirements

	1.3. Contributing to Axon Framework
	1.4. License information

	2. Architecture Overview
	3. Command Handling
	3.1. Creating a Command Handler
	3.2. Dispatching commands
	3.3. Configuring the Command Bus
	3.4. Unit of Work
	3.5. Command Handler Interceptors
	3.5.1. Transaction management
	3.5.2. Structural validation
	3.5.3. Auditing

	4. Domain Modeling
	4.1. Events
	4.1.1. Domain Events
	4.1.2. Application Events
	4.1.3. System Events

	4.2. Aggregate
	4.2.1. Basic aggregate implementations
	4.2.2. Event sourced aggregates
	4.2.3. Complex Aggregate structures

	5. Repositories and Event Stores
	5.1. Standard repositories
	5.2. Event Sourcing repositories
	5.3. Event store implementations
	5.4. Snapshotting
	5.4.1. Creating a snapshot
	5.4.2. Storing Snapshot Events
	5.4.3. Initializing an Aggregate based on a Snapshot Event
	5.4.4. Pruning Snapshot Events

	5.5. Advanced conflict detection and resolution

	6. Event Processing
	6.1. Event Bus
	6.1.1. Simple Event Bus
	6.1.2. Clustering Event Bus

	6.2. Event Listeners
	6.2.1. Basic configuration
	6.2.2. Asynchronous event processing
	6.2.3. Managing transactions in asynchronous event handling

	7. Managing complex business transactions
	7.1. Saga
	7.1.1. Life Cycle
	7.1.2. Event Handling
	7.1.3. Keeping track of Deadlines
	7.1.4. Injecting Resources

	7.2. Saga Infrastructure
	7.2.1. SagaManager
	7.2.2. SagaRepository

	8. Testing
	8.1. Command Component Testing
	8.2. Testing Annotated Sagas

	9. Using Spring
	9.1. Adding support for the Java Platform Common Annotations
	9.2. Using the Axon namespace shortcut
	9.3. Wiring event and command handlers
	9.3.1. Event handlers
	9.3.2. Command handlers
	9.3.3. Annotation support using the axon namespace

	9.4. Wiring the event bus
	9.5. Wiring the command bus
	9.6. Wiring the Repository
	9.7. Wiring the Event Store
	9.8. Configuring Snapshotting
	9.9. Configuring Sagas

	10. Performance Tuning
	10.1. Database Indexes
	10.2. Caching
	10.3. Snapshotting
	10.4. Aggregate performance
	10.5. Event Serializer tuning
	10.6. Custom Identifier generation

