Sample Application

Axon Framework 1.2

Jettro Coenradie

Allard Buijze

Table of Contents

1. Address Book

I T g1 (0T 18 Tox (o TR
A = 1 e 1T= o | SRR
1.3, APPHICALION TOGIC ..ttt e e et e e s snbn e e e e nnneeas

Axon Framework 1.2 Sample Application

1. Address Book

1.1. Introduction

Every good framework needs a sample application. Y ou want to have an application that demonstrates
enough of the framework and is easy enough to understand. The Address book sample we have created is
such an application. A very simple domain to understand with enough features to show things like the event
mechanism, the commands and the separate data store and query database.

The address book sample shows an Adobe flex user interface. The flex client makes the event handling
interesting. The server side domain events are pushed to the flex clients to keep them up to date.

So what does the sample provide? The sample contains contacts with addresses. Each contact can have a
maximum of three addresses, one for each available type. Using the query database, you can request all
contacts, request contact details and search the addresses. For this kind of queries, the query database is
used. You can also create new contacts and addresses or provided updates.

To interact with the application, you have to dispatch comamnds. The domain creates events for things
like: contact created, contact updated, address changed. These events are picket up by special listeners that
publish these events to all flex clients using BlazeDS. More on this part follows in section Section 1.2,
“Hex client”.

The following image gives an overview of the architecture as discussed in this section.

Axon Framework 1.2 Sample Application 1

Browser

Flex
client

e
Web container)
Spring BlazeDS
Query event
Axon framework
—_—

Figure 1.1. Architecture overview address book sample

The next image gives a preview of the flex client.

8O 6 w“mmmu{

nu + |6 http://localhost:8080/ & P(Q~ Google

type
PRIVATE AxonBoulevard 1 1234A8 The Hague
WORK JTeam avenue 1234A8 Amsterdam

Figure 1.2. Preview of the flex client of the address book

Axon Framework 1.2 Sample Application

1.2. Flex client

In this section we will describe the main components of the flex client. The flex client makes use of an
Inversion Of Control framework called parsley. This framework makes the application maintainable and
easier to understand. Parsley makes use of meta-data tags to indicate injection of objects and handling of
messages. It makes heavily use of messages and events.

@ Note

For the flex application we use the parsley framework. More information about the framework
can be found on the Parsley website: ht t p: / / wwww. spi cef act ory. or g/ par sl ey/

The flex client talks to the server. Remote objects are used to ask data from the server and send data
to the server. Another mechanism, called consumers, is used to receive update events. Both types of
communication are handled by the BlazeDS framework. To make integration with the back-end even easier,
the sample makes use of the spring blazeds integration project.

The nice part about using flex on the client side is that flex enables you to receive the domain events and
keep alocal cache of the data. In the end, the flex client becomes a remote cache of the data on the server
that makes use of the domain events to stay up to date. To receive the events, the application registers an
event listener. The following code block shows the event listener .

@Conponent

public class AddressListener {
private final static Logger |ogger = LoggerFactory. getLogger (AddressLi stener.cl ass);
private Updat eMessagePr oducer For Fl ex producer;

@tvent Handl er
public voi d handl eAddr essCr eat edEvent (Addr essRegi st er edEvent event) {
Addr essDTO addr essDTO = Addr essDTO. cr eat eFr om(
event . get Address(), event.getContactldentifier(), event.getType());
producer . sendAddr essUpdat e(addr essDTO) ;

}

@vent Handl er
publ i c voi d handl eAddr essRenovedEvent (Addr essRenovedEvent event) {
RenmovedDTO renmovedDTO = RenmovedDTO. cr eat eRenpvedFr on(
event.get Contactldentifier().toString(), event.getType());
producer. sendRenpvedUpdat e(r enovedDTO) ;

}

@\ut owi r ed
public void setProducer (Updat eMessagePr oducer For Fl ex producer) {
this. producer = producer;

}

}

This class registers two event listeners. The Axon Framework uses the EventHandler annotation and the
argument of the method to register the right listener and to call this method when the event takes place. Both
method create a DTO object and send this via the BlazeDS producer to all flex clients.

Axon Framework 1.2 Sample Application 3

@ Note

Sincethisis not areference manual for flex or pardey you will not find a detailed description
of theflex client. If you want more information on the flex client, refer to this blog item. http://
www.gridshore.nl/2010/02/25/creating-a-sampl e-for-axon-using-flex-and-pard ey/

1.3. Application logic

Axon is aframework. Axon makesiit easier to create your own application following the Axon principles.
This section discusses the components of the sample that make use of the Axon Framework and that form
the back-end of your application.

It al starts with the domain. The address book has a very easy domain, a root aggregate called Contact.
The contact has a collection of addresses. The Address is an immutable value object. The most important
business ruleisthat each addressis of a certain type and a contact can only have one address of each type.

Providing new or updated data to the application is done using commands and command handlers.
The Creat eCont act Conmand is used to create new contacts, the Updat eCont act Conmmand
to update existing and more commands to provide data for other tasks. All these commands are
handled by the Cont act CommandHandl| er . The handler creates or updates the aggregate roots, in
this case theCont act , and registers them with the repository. The aggregate root creates events like
Cont act Cr eat edEvent . These events are dispatched by the Cont act Reposi t or y when storing
the change has taken place. The following image gives you an idea what happens when a contact is created.

[CommandReceiverimpl]

[
dispatch

v

CommandBus J
[

handle

[ContactCommandHandler)f new —>
[

ntact
createContact new

[ContactRepository } dispatch >| ContactCreatedEvent

Figure 1.3. Interaction between the different components

)

Asyou can see from the previous image, events are dispatched by the repository. The listener as discussed
in section Section 1.2, “Flex client” listens for these events.

Now that we have covered adding data by dispatching commands that are handled command handler class,
the next part is about querying the data. The address book sample makes use of a separate data source

Axon Framework 1.2 Sample Application 4

for querying the data. Two databases configurations are available, mysgl and hsgldb. The configuration
is available in the file database-context.xml. By changing the following lines you can switch between an
hsgldb or mysqgl.

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. PropertyPl| acehol der Confi gurer">
<property nanme="l|ocati ons" val ue="cl asspat h: hsqgl db. dat abase. properties"/>
</ bean>

The sample makes use of jpa to keep the query datastore up te date. Events are received and handled
by theAddr essTabl eUpdat er . Theclasses Cont act Ent r y and Addr essEnt r y represent the two
entities as they are stored in the query datastore. The Cont act Ent r y can be used to obtain alist of all
available contacts. The Addr essEnt r y can be used to query for addresses belonging to a contact and for
addresses in a certain city.

It is important to understand that this query datasource registers listeners, just like the flex client, to get
updates about contact and address changes.

Axon Framework 1.2 Sample Application 5

	Sample Application
	Table of Contents
	1. Address Book
	1.1. Introduction
	1.2. Flex client
	1.3. Application logic

